
EECE 5644 Final Project Report
Machine Learning For Computer Vision
Chris Swagler, Tae Yang, Gary Lvov

Field Overview
Computer vision, a field deeply intertwined with machine learning, revolves around

creating algorithms and systems that allow computers to interpret visual data from the physical
world. It entails various techniques that aim to mimic human vision, extract meaningful
information from images and videos, and enable machines to recognize objects or scenes.
Although learning based techniques play an essential role in modern computer vision, many
analytical techniques provide critical functionality that can be used independently or in
conjunction with learning based techniques.

One fundamental aspect of computer vision are feature detectors and descriptors. These
techniques include the Harris Corner Detector [1], which finds corners in an image based off of
relative pixel intensities. The Harris Corner Detector is often utilized with a checkerboard of
known dimensions to ascertain camera intrinsics. Similarly, the SURF[2] Feature
Detector/Descriptor provides a unique representation of all detected features, thus enabling the
computation of homography between two images to allow for stitching of images of the same
scene. It identifies features that remain invariant to alterations in scale, rotation, and affine
transformations, exhibiting similarities to other methods such as SIFT [2]. Another critical
technique, the Canny Edge Detector [3], identifies edges in an image by optimizing the intensity
gradients of blurred images and finalizing the edges via Hysteresis.

Complementing these detection techniques, determining optical flow[4] allows for
analyzing feature movement. Optical flow assumes that neighboring pixels exhibit similar
motion and that pixel intensity remains consistent from frame to frame. By calculating the
relative motion of each pixel, these techniques can be applied for video stabilization and target
tracking of features within an image.

Multi-View Geometry allows utilizing known camera intrinsics and extrinsics for
multiple cameras to compute depth information from captured images. Techniques such as
Stereo Vision use two cameras to generate images from slightly different viewpoints, allowing
for the computation of disparities[5] and the creation of three-dimensional point cloud
representations of a scene. Alternatively, sensors such as LiDAR can generate point clouds for
point cloud processing techniques like Simultaneous Localization and Mapping[6] in robotics or
autonomous driving.

Despite the efficacy of these classical techniques in capturing spatial-temporal
information, they are limited in their inability to grasp high-level semantic understanding or
extract complex contextual information. However, the advent of learning-based methods, such as
Convolutional Neural Networks[7], Recurrent Neural Networks[8], and Transformer-based
models[9], has revolutionized the field. These supervised learning techniques, trained on

1

annotated images, have demonstrated remarkable success in various computer vision tasks,
enhancing the field's ability to glean deeper, more meaningful information from visual data.

Object Detection in Autonomous Vehicles (AV)
Object Detection Overview

The first computer vision technology to investigate is object detection. It is a task of
identifying and localizing objects within digital images or video frames which are basically a
sequence of digital images.

Figure 1: Single object classification and localization [10]

Figure 1 shows an example of classification and localization technology used in object detection
on a single object. Classification is to assign a label or category to an input image. A machine
learning model is trained using a labeled dataset and learns to extract meaningful features from
the images and map them to the corresponding classes. During inference, an image is fed into the
trained model which produces a probability distribution over the predefined set of classes. The
class with the highest probability is then assigned as the predicted label for the input image.
However, if there are multiple objects to be recognized in one image, exact regions of the objects
should be located. This is where localization technique is utilized. Localization determines
bounding boxes that tightly enclose the objects such as the red box in Figure 1.

Figure 2: Multiple object detection [10]

2

Combining classification and localization, multiple objects in a single image can be
detected with bounding boxes and corresponding classes as shown in Figure 2. To explore
further details of object detection, localization for multiple objects can be divided into two steps
[10]. The first step is to generate a set of potential object proposals or candidate bounding boxes
through a region proposal network (RPN). These proposals act as potential regions of interest
(ROIs) that may contain objects. Subsequently, the bounding box coordinates of the proposals
are refined to tightly fit the objects present in the image. This is achieved through bounding box
regression. The algorithm learns to predict adjustments or offsets to the candidate bounding box
coordinates, adjusting their position, size, and aspect ratio to more accurately localize the
objects. Finally, these refined proposals are fed into a classification network which works the
same as in the single object detection in Figure 1.

Evolution of Object Detection
Until 2012, traditional techniques leveraged hand-crafted heuristics to extract visual

features and manually tuned parameters to combine these features for inferences and decisions.
These techniques are simple yet effective for many cases [11]. However, they are often not
generalizable and difficult to configure. As explained in Field Overview, more powerful and
accurate automated visual recognition techniques were enabled by deep neural networks that can
handle high-dimensional data with the advent of the deep learning era. In particular, CNNs excel
at image recognition and pattern identification due to its ability to capture space invariance of
shapes in images.

Figure 3: Evolution of deep learning based object detection algorithms [12]

There have been various object algorithms developed since 2012 as shown in Figure 3. Main
purposes of the algorithms are focused on improving accuracy, speed, real-time performance,
and the ability to detect objects at various scales [12].

Among these algorithms, Faster R-CNN, YOLO, SSD, and RetinaNet are dominant ones
in AV [13]. In this application, accuracy and responsiveness are highly significant at the same
time. AVs need to identify other vehicles, traffic agents and signs correctly to decide their next

3

control and path. Furthermore, they need to perform the detecting task as soon as possible since
driving environments are dynamic and rapid. That’s why the four algorithms are mainly used for
most of the AV companies’ object detection models.

Taxonomy of Object Detectors
The object detectors can be classified based on the underlying network architecture they

employ. There are two types of network which are two-stage detectors and single-stage detectors
[13]. For example, R-CNN variants are two-stage detectors and YOLO, SSD, and RetinaNet are
single-stage detectors.

Figure 4: Two-stage vs Single stage object detector diagram [13]

Two-stage detectors use region proposal methods such as selective search or RPNs with image
features from feature extractor using convolutional layers as shown in Figure 4-(a). The ROIs are
collected by a ROI pooling whose purpose is to extract fixed-sized feature maps from
variable-sized regions. The ROI pooling aligns and reshapes the regions proposal into a
consistent format for subsequent classification and bounding box regression. Fully connected
(FC) layers are the final layers that execute linear transformation with weights in the network
architecture. They provided a flexible and trainable framework for capturing high-level
representations and making object-level predictions based on the extracted ROIs. On the other
hand, single-stage detectors directly predict class probabilities and bounding boxes in a single
pass through the network as shown in Figure 4-(b). Instead of using the ROI generator, they
operate on a dense grid of anchor boxes that cover the spatial locations and scales of potential
objects in the input image. At every anchor box location, similar predictions as in the two-stage
detectors are implemented. The anchor boxes act as priors in the FC layers and their coordinates
are adjusted along with the class and bounding box predictions.

4

The single-stage detectors are generally faster than the two-stage detectors due to their
direct prediction approach. However, the two-stage detectors often achieve higher accuracy,
especially for small objects or in cases with complex scenes, due to their multi-stage nature and
refined bounding box regression. Some of the detectors are further explored in detail to
understand their principles better and tested with custom dataset in the following sections.

Detectors Performance Test
For the following testing, RetinaNet and YOLO were selected as they were fast and

appropriate for object detection in AV. Vehicle dataset were used to train and test the detector
models as if the models were for AV to detect different types of vehicles on the roads.

Figure 5: Example of vehicle dataset

The dataset provided pre-labeled images. There were 2634 train images, 966 valid images, and
458 test images. The vehicles in the images were classified as one of the 12 classes which were
big bus, big truck, bus-l-, bus-s-, car, mid truck, small bus, small truck, truck-l-, truck-m-,
truck-s-, and truck-xl-.

RetinaNet
RetinaNet is famous for its ability to address a class imbalance which refers to an uneven

distribution of objects across different classes in the training dataset from YOLO and SSD when
detecting small objects which are common challenges for the single-stage detectors. The small
objects have less features extracted, so RetinaNet uses a focal loss function during training and a
separate network for classification and bounding box regression. The focal loss functions apply a
modulating term to the cross entropy loss in order to focus learning on hard misclassified
examples such as the small objects.

Figure 6: RetinaNet diagram [14]

5

The architecture of RetinaNet has a rich multi-scale feature pyramid from an input image and
performs prediction at each scale as shown in Figure 6. In that way, it can be semantically strong
at all scales.

For the RetinaNet model training, Pytorch RetinaNet and Pascal VOC dataset format
were used.

Figure 7: Example of Pascal VOC dataset

Pascal VOC datasets provide xml label files as shown in Figure 7. The label files include classes
and coordinates of bounding boxes for each object in the images. 50 epochs were performed for
the training. One epoch is when all the training data is used at once. The number of epochs is
relevant to a convergence of weights of the models.

Figure 8: Examples of testing results of RetinaNet

6

The training result showed a classification loss of 0.112, box regression loss of 0.0385,
and validation loss of 0.515. The classification and box regression were trained satisfactorily, but
the validation loss was high which meant there was an overfitting during the training. Thus, the
training results in Figure 8 demonstrated some misclassification and duplicate bounding boxes
on a single object.

YOLOv5
YOLO stands for You Only Look Once to emphasize its speed in object detection. It has

many variants such as v1, v2, v3, and so forth. For the testing, YOLOv5 was selected since it
was one of the latest versions and proved its performance on many datasets throughout open
source communities. YOLOv5 is famous for proposing further data augmentation and loss
calculation improvements. Data augmentation is deliberately transforming training images by
cropping, resizing, and flipping to increase the diversity of the dataset. This improves the
model’s generalization ability and robustness. Additionally, Auto-learning bounding box anchors
are featured in the detector to adapt to a given dataset. Anchor boxes are usually fixed boxes for
calculating bounding boxes. Auto-learning bounding box anchors are adaptive to datasets in
order to enable fast converging bounding box calculation.

Figure 9: YOLOv5 diagram

The architecture of the detector is similar to that of RetinaNet having a rich feature pyramid to
generalize well to objects on different sizes and scales and predicting classes and bounding boxes
at each neck layer in Figure 9.

For the YOLOv5 model training, Ultralytics YOLOv5 and TXT annotations dataset
format were used.

Figure 10: Example of TXT annotation dataset

7

Unlike the Pascal VOC format, TXT annotation format includes class types and center
coordinates of bounding boxes with their widths and heights. Again 50 epochs were executed for
the same dataset.

Figure 11: Confusion matrix of YOLOv5 on vehicle dataset

YOLOv5 provided not only training losses, but also various training results such as the
confusion matrix in Figure 11. It was able to make correct detections on most of the classes with
a classification loss of 0.0069 and box regression of 0.032. Its validation loss was 0.036.

Figure 12: Examples of testing results of YOLOv5

YOLOv5 detected objects very accurately on the testing images as shown in Figure 12. Most of
the vehicles were classified correctly and bounding boxes were fitting in them tightly. Even some
vehicles that were partly covered by other vehicles were detected showing the powerful
inference of the detector.

8

Detectors Evaluation
Given the limited time and computing resources, only two algorithms were tested. In

order to provide an extensive performance evaluation for object detectors in AV, a test result
from a paper is borrowed as shown in Figure 13 below.

Figure 13: Object detector test results on vehicle dataset [13]

The main performance indicators are mAP (mean Average Precision) and inference rate. mAP is
a commonly used metric as it combines the concepts of precision and recall to assess the
accuracy and effectiveness of an object detector. It measures how well the detector localizes and
classifies objects across different classes and different levels of confidence thresholds. A higher
mAP indicates better object detection performance. Inference rate is literally how many images a
detector can process in a second. Reasonably, the two-stage detectors showed good mAP results
but very low inference rates compared to those of the single-stage detectors. With the advantage
of achieving fast inference rate, the single-stage detectors have made great improvements on
accuracy as well and the result shows that mAPs of the single-stage detectors are fairly as high as
those of the two-stage detectors.

Gesture Recognition
Gesture Recognition Overview

A gesture can be defined as any meaningful movement of part of the body. Gestures can
be performed by the entire body when jumping up and down for joy or they can be more acute
and be limited to just two fingers when making a peace sign. Gestures can also be expressed on
one’s face to demonstrate an emotional response. Not only can gestures be categorized by the
region of the body, but they also can be classified as static or dynamic. For example, a static
gesture could be a thumbs up or a dynamic gesture could be a flick of the hand to the right.

When considering gestures as they relate to computer vision, the topic of gesture
recognition arises: the idea that a meaningful movement can be understood via an image or

9

video. It is useful to have computer techniques to interpret gestures for a variety of reasons. For
instance, a photo application could interpret a thumbs up as a cue to take a picture, allowing
users to position themselves beyond the reach of a device to capture an image. Or in the setting
of a vehicle, having gesture recognition on a flick of the hand to the right could skip the song
playing on the sound system without requiring the user to divert their attention from the road to
press a button. As a whole, gesture recognition can be applied as an input mechanism to a
computer system. Additionally, gesture recognition has use cases in medical operations as
alternatives to peripheral devices like a mouse and keyboard when zooming or rotating medical
scans and images [21]. Gesture interaction can also be used for gaming, as popularized by the
Microsoft Kinect Xbox, through hand or body movement.

VR/AR Gesture Recognition
One of the applications of gesture recognition that has gained popularity with recent

technological advances is with Virtual Reality (VR) or Augmented Reality (AR) devices. VR is a
“computer simulation system that can create and simulate virtual worlds” [22] that provides an
immersive experience for users, fully occluding the user from viewing the real world. Instead,
users are provided an experience in which their interactions are given feedback through a virtual
scene, as if they are immersed. Augmented reality follows a similar principle but instead of fully
immersing users in a virtual world, virtual elements are augmented onto a real-world scene. This
real-world scene can either be truly “seen” through a transparent medium like glass with virtual
elements displayed on the glass, or the real-world can be transmitted to the user on a screen
through a camera with the virtual elements displayed on the screen as well.

Devices like the Meta (Oculus) Quest specialize primarily in the VR space but also have
AR (passthrough) capabilities for a relatively low cost. The Quest headset comes with handheld
controllers but also can be controlled via gesture recognition with hands. Other devices like
Apple’s Vision Pro are designed primarily for AR and are primarily controlled with gesture
recognition. Both of these devices are head-mounted displays (HMDs), meaning the user wears
the device on their head and their visual experience comes from the screen covering their eyes.
Among other sensors and other proprietary differences, both of these headsets are equipped with
cameras on the underside of the front of the device, positioned so that when the user’s head is
looking forward, the cameras can capture the user’s hands. The distinction between VR and
AR-specific headsets on the topic of gesture recognition is not incredibly important since the
distinction is primarily concerned with the visuals transmitted to the user. The main observation
from these HMDs is that they use cameras to capture hand gestures performed by the user from
which the device can use computer vision to interpret and process these gestures.

Major State of the Art Algorithms
Gesture recognition, especially as it applies to VR/AR devices, poses some unique

challenges within computer vision. For real-time gesture recognition from video streams some
challenges include identifying the actual start and end of a performed gesture and ensuring that

10

the performed gesture is only recognized once [17]. Additionally, it’s essential to have gesture
recognition algorithms that are highly efficient and responsive. With HMDs that occlude the user
from viewing the real world, any latency or lag in displaying gesture responses can be frustrating
or even disorienting for users. To tackle some of these problems, several advances in efficient
and accurate gesture recognition algorithms have surfaced, including Support Vector Machines,
Random Forests, and K-Nearest Neighbors.

Support Vector Machines
A popular approach to gesture recognition algorithms is the Support Vector Machine

(SVM). SVM is a supervised learning algorithm used in classification or regression problems
[17]. The premise of this algorithm is to find a multi-dimensional hyperplane separating classes.
Many superplanes exist that can divide a dataset, but the objective of SVM is to find the
hyperplane that maximizes the margin between classes. This margin is defined by the nearest
data points of different classes to the plane. For non-linear classification, kernels can also be
applied.

Figure 14: An example of a hyperplane maximizing the distance, d, between two classes [17]

Random Forests
Random Forests (RF) are another popular gesture recognition algorithm. RF is an

ensemble learning algorithm combining multiple decision trees, leading to a high precision
statistical modeling technique for regression and classification [17]. Naive decision trees are
generally prone to overfitting and inaccuracy in high-dimensional modeling problems, but RF
can correct these problems. The algorithm creates a specified number of trees, each trained on a
different subset of the training data. Each tree assigns a class based on their own model, and the
final prediction produced by RF aggregates the predictions from the trees.

11

Figure 15: A visualization of the Random Forest algorithm [17]

K-Nearest Neighbors
K-Nearest Neighbors (KNN) is also an effective algorithm for gesture recognition.

Unlike the aforementioned algorithms that have a training phase, this algorithm simply stores the
training dataset and finds the K nearest neighbors to a given data point. The nearest neighbors
are determined by calculating the distance between feature vectors. The number of nearest
neighbors, K, is a parameter that can be specified. The final prediction is the class label
appearing most frequently among the nearest neighbors. It’s a simple and easy algorithm to use
and is strong with small datasets with a well-defined feature space [20].

Figure 16: A visual representation of KNN for a given point, X, with three classes [20]

Standard Test Dataset
In order to evaluate these proposed algorithms, a standard test dataset was used. A

multitude of labeled gesture recognition datasets exist but the uniqueness of analyzing gesture
recognition for VR/AR applications requires an egocentric dataset, where the user’s head is
behind the camera and the captured feed is either first-person or pointed downwards.

12

The dataset used is the Virtual Reality Gesture Recognition Dataset [21]. The dataset uses
snapshots of individuals making different hand gestures, and the features are reported as specific
distances between the fingers and the palm, including distances between two fingers.

Figure 17: An image from the Virtual Reality Gesture Recognition Dataset [21]

The dataset consists of 9 features, which are the distances, and 6 classes representing various
gestures. The overall dataset includes 447 samples, and the Virtual Reality Gesture Recognition
Dataset separates the samples into 3 datasets based on the probabilities listed in the figure below.

Figure 18: The data distribution of the 3 smaller datasets used in the Virtual Reality Gesture
Recognition Dataset [21]

For the Evaluation of Algorithms section, only this dataset was used in the evaluation
process. However, it is worth mentioning another dataset, given more time and resources to
continue researching this topic, would be used. The EgoGesture Dataset is a significantly larger
dataset that is described as a “multi-modal large scale dataset for egocentric hand gesture
recognition” [22]. It contains 2,081 RGB-D videos, 24,161 gesture samples, and 2,953,224
frames from 50 distinct subjects with 83 classes of static and dynamic gestures. The advantages
of using this dataset over the previously mentioned is clear since it is a much more diverse and
comprehensive dataset. However, the sheer size of the dataset, consisting of 46 GB of videos and
32 GB of images, proved to be a challenge to download on the computer used for running the
algorithms. If given access to a computer with more storage capacity to handle the dataset and
higher processing power to speed up the unarchiving process, this dataset would be the clear
choice. Unfortunately, the limitations of storage and processing power led the Virtual Reality
Gesture Recognition Dataset to be the dataset used in evaluation.

13

Evaluation of Algorithms
In order to evaluate the SVM, RF, and KNN algorithms, the Gesture Recognition Toolkit

(GRT) was used. GRT is a cross-platform, open-source, C++ machine learning library
specifically designed for real-time gesture recognition. It has a multitude of tools available
including classification algorithms, clustering algorithms, and regression modules, to name a
few. It’s organized into an object-oriented modular architecture, which supports functions like
predict, train, save, load, reset, and clear for nearly all of the GRT classes. To evaluate the
algorithms, the SVM, RandomForests, and KNN classes from this toolkit were used.

The overall process for evaluating the algorithms was relatively standardized, having
small deviations to tune parameters of the individual algorithms. Each program took in an
argument to specify the filepath of the dataset, which would be to one of the three CSVs from the
Virtual Reality Gesture Recognition Dataset. The dataset would then be loaded into a
ClassificationData object, used for the training data. The toolkit also provided a method for the
ClassificationData class to split the dataset, and so for each program 20% of the training dataset
was reserved for testing. Then within each algorithm’s evaluation program, an object was created
for the classifier and parameters were set. For SVM, the classifier was initialized as a linear
kernel and set to enable scaling of the training and prediction data. For RF, the classifier was set
to have a forest size of 10, a maximum tree depth of 10, and minimum number of samples per
node of 10. For KNN, the K value was initialized to 6 and scaling was also enabled. Once the
classifier objects were instantiated, the classifier was trained on the training data and the model
was saved to a file. Using the generated model, the predict method was used on the classifier,
given an input feature vector from the test dataset. The accuracy of the predicted versus actual
class was determined using the test dataset and reported. For each of the classification
algorithms, the training set accuracy was reported along with the resulting test accuracy for the 3
datasets. The results are found in the figure below.

14

Figure 19: Results using the GRT SVM, RF, and KNN classifiers on the 3 datasets from the
Virtual Reality Gesture Recognition Dataset

The results were determined by the percentage of correctly predicted class labels over the
total number of samples in the test dataset. There are other metrics to evaluate classifier
performance but this approach is a simple and a good indicator. From the above results, the SVM
classifier performed the strongest. This is likely due to the nature of SVM having strength in
handling high-dimensional feature spaces. The success of these algorithms on this dataset could
be attributed to a number of factors, including the size of the dataset in terms of number of
samples, features, classes, etc. If the hardware limitations were resolved, evaluating these
classifiers on the much larger EgoGesture dataset would be a worthwhile exercise to truly
evaluate the performance of these algorithms.

Other Algorithm Evaluations
Other researchers have done more through evaluations of the aforementioned algorithms

and also different promising algorithms. For instance, the SVM algorithm incorporated in
histogram of oriented gradient (HOG) was demonstrated to be a strong gesture recognition
algorithm in its application to robotics systems, with accuracy improved up to 99% [23]. This
proposed algorithm, though thorough, was still evaluated on a small dataset and should be
evaluated on a larger, more comprehensive dataset. Another algorithmic approach to tackling
gesture recognition is using convolutional neural networks (CNNs). Researchers developed an
architecture consisting of two models: the first which is a lightweight CNN gesture detector, and
the second which is a deep CNN to classify the detected gestures [21]. This model was used as a
classifier on the EgoGesture and NVIDIA Gesture datasets, achieving 94.04% and 83.82%

15

https://www.sciencedirect.com/science/article/pii/S2096579619300075

accuracy, respectively, on these large datasets, proving to be another effective algorithmic
approach.

Challenges
Numerous challenges persist as advancements are made to gesture recognition in VR/AR

devices. The first is developing efficient and lightweight algorithms. Many older HMDs were
tethered to a computer, with much of the processing power on that external computer. However,
this age of HMDs is shifting towards having the computer onboard. To maximize comfort and
wearability, these headsets need to be lightweight and should not have spatially large compute
units. A specific challenge to gesture recognition is the interpretation of both static and dynamic
gestures, and being able to interpret gestures that appear similar. These distinctions can be
addressed by having more training data but can otherwise be avoided by designers by assigning
distinct, yet intuitive gestures for tasks.

Other computer vision challenges that apply to gesture recognition with VR/AR are a
camera’s limited field of view (FOV) and lighting limitations. Only what the camera sees can be
processed, and so gestures performed outside of the camera’s FOV, including out of frame or
blocked by other objects, might not get captured. Additionally, gestures performed in dark
lighting prove to be difficult to interpret. Both of these challenges are often mitigated by using
more sensors on the HMDs, either by positioning more cameras on the display to extend FOV or
by using other types of sensors like LIDAR.

Monocular Depth Estimation
Motivation

Although it is possible to obtain depth information from stereo cameras with classical
techniques, a monocular approach could reduce the price of equipment needed by only relying
on one camera as opposed to several. Even systems that employ multiple cameras could be
augmented with the additional information. Furthermore, most cameras are monocular, as well as
most video/photos that are available, due to the popularity of monocular cameras. The human
ability to perceive a monocular video or image as realistic implies the human ability to perform
monocular depth estimation. If one were to try to navigate a scene with one eye closed, they
would be able to perform some depth estimation, albeit perhaps not as well as with two eyes
open. As computer vision attempts to mimic a human’s ability to perceive, this predicates
monocular depth estimation as a fundamental problem to computer vision. Collecting labeled
datasets for monocular depth estimation is convenient as they can be autonomously labeled by
recording point cloud data from a stereo system or LiDAR concurrently with a monocular feed.
However, monocular depth estimation presents a significant technical challenge. Unlike stereo
vision, which calculates depth through triangulation from two different viewpoints, monocular
depth estimation must rely on other cues. These cues may include perspective (the size of known
objects), texture gradient (the detail of textures), or shading, among others. The ability to

16

algorithmically interpret these cues in a manner similar to human perception is a complex task
and forms the crux of the problem.

Evaluation
Currently, the two most popular datasets for monocular depth estimation are the KITTI

Eigen split [24], and NYU-Depth V2 [25]. The KITTI dataset includes scenes outdoors on roads,
and the NYU-Depth V2 dataset includes indoor scenes. As benchmarked by Papers with Code,
SwinV2-L 1K-MIM[20] exhibits the lowest error on the KITTI Eigen split, and VPD [17]
exhibits the lowest error on NYU-Depth V2. These techniques are selected for further
investigation due to their performance, and their principles of these approaches are described in
subsequent sections. Running these models proved difficult on an Nvidia GeForce RTX 3080
Laptop GPU with 16gb VRAM, due to their high computational demands. The VPD repository
suggests utilizing 8 Nvidia V100 GPUs, which could cost over a hundred thousand dollars.

Figure 20: GPU consumption by VPD on NYU depth v2, and the reported errors output of the
testing set.

This gives the insight that it is unlikely for such models to run locally on more inexpensive
consumer hardware (as it took over an hour to estimate depth for 654 images on a higher
specification gaming laptop) until GPU processing power improves, or such models can be
produced in more lightweight variants.

On the NYU Depth V2 dataset, VPD had an RMSE of .2542, while SwinV2-L 1K-MIM
had an RMSE of .2871. It is important to note that despite SwinV2-L 1K-MIM’s higher RMSE,
it does not require context labels like VPD. As a result of requiring context labels, VPD is not yet
compatible with KITTI, where SwinV2-L 1K-MIM had an RMSE of 1.966.

Vision Transformer
Vision Transformers (ViT) were first introduced in the paper "An Image is Worth 16x16

Words: Transformers for Image Recognition at Scale" [27]. This groundbreaking model offers a
unique approach to image recognition tasks, by dividing images into non-overlapping patches
and treating these patches as if they were words in a sentence - a process equivalent to the

17

attention layer used in the influential NLP paper, "Attention Is All You Need" [22]. This allows
the model to determine the importance or attention of different parts of the image. In other
words, 'attention' allows the model to focus more computational resources on important parts of
the image, while reducing the emphasis on less relevant areas. This is especially beneficial in
tasks like depth estimation, where the importance of different image regions varies greatly. By
focusing on regions with higher relevance for depth cues, the model can achieve more accurate
depth estimation. Recently, this attention-based approach has shown immense promise in the
field of monocular depth estimation, as it is adept at recognizing patterns and correlations
between different elements of the image. This sophisticated level of understanding allows Vision
Transformers to accurately estimate depth from a single image, pushing the boundaries of what is
possible in monocular depth estimation.

Figure 21: Visual Transformer architecture and visualization of Attention [28].

SwinV2-L 1K-MIM
SwinV2-L 1K-MIM is a cutting-edge approach to depth estimation introduced in the

paper "Revealing the Dark Secrets of Masked Image Modeling" [26]. It boasts the lowest Root
Mean Square Error (RMSE) in the Monocular Depth Estimation on KITTI Eigen split, and ranks
fifth lowest on the NYU-Depth V2 benchmark as benchmarked by Papers With Code. This
approach leverages the concept of Masked Image Modeling (MIM), which involves the use of
images with omitted portions for training transformers, a strategy that is also applicable for
object detection and segmentation. MIM involves the use of images with deliberately omitted, or
"masked," portions. These masked portions provide the model with a kind of 'blind spot' during
training. The task of the model is then to predict and fill in these masked sections, much like
filling in the blanks in a sentence. This method significantly enhances the model's depth
estimation capabilities by forcing it to infer information from the visible sections of an image to
accurately predict the obscured parts. The model, in essence, learns to understand and replicate
the inherent structural and contextual patterns within the image.

The model specifically uses the Swin Transformer block, where the standard multi-head
self-attention mechanism is replaced with a shifted windows module. This innovative method
has shown improved performance in various computer vision tasks. Unlike traditional vision
transformers which typically input an RGB image and output a class label, SwinV2-L 1K-MIM

18

operates differently. It takes an RGB image with a missing patch as its input and instead of a
class label, the model outputs a depth map. A depth map is a two-dimensional representation that
encapsulates the three-dimensional structure of the scene. Each pixel in the depth map represents
the estimated distance from the camera to the corresponding point in the real world, allowing for
a detailed understanding of the scene's spatial properties. This advanced application of vision
transformers sets a new bar in monocular depth estimation.

VPD
In the study "Unleashing Text-to-Image Diffusion Models for Visual Perception", a novel

framework known as Visual Perception with a Pre-trained Diffusion model (VPD) is proposed.
This framework exploits the high-level knowledge embedded within a pre-trained text-to-image
diffusion model, specifically aiming to harness this knowledge for downstream visual perception
tasks such as depth estimation. Diffusion models, trained on extensive image-text pairs, carry
substantial high-level information obtained from natural language supervision during
pre-training. They are capable of reconstructing the data distribution by learning the reverse
process of a diffusion process. VPD goes a step further by "prompting" the model with
appropriate textual inputs and refining these text features with an adapter. This strategy results in
better alignment to the pre-trained stage and promotes a productive interaction between the
visual contents and text prompts.

A key aspect of the VPD framework involves the construction of hierarchical feature
maps using the text-to-image diffusion model. These maps are derived from an image or
conditioning inputs and then decoded for the specific downstream perception task—in this case,
depth estimation. By establishing a connection between the task-specific label and natural
language, the learned semantic information can be efficiently extracted and utilized. The
effectiveness of the VPD framework, specifically for depth estimation, is demonstrated through
impressive results. Notably, VPD outperforms methods that use robust visual backbones
pre-trained on masked image modeling such as SwinV2-L 1K-MIM on some datasets,
establishing a new record in the field. These findings underline that large-scale text-to-image
pre-training can be highly competitive in downstream visual perception tasks, even compared to
dedicated visual pre-training methods, reinforcing the efficacy of the VPD approach.

Discussion
Monocular depth estimation, though a complex problem, is fundamental to advancing the

capabilities of computer vision systems. Its potential applications are far-reaching, from enabling
cost-effective autonomous navigation to enhancing virtual reality experiences. The discussed
techniques, SwinV2-L 1K-MIM and VPD, represent promising approaches in this field,
harnessing the power of advanced techniques like Vision Transformers and pre-trained diffusion
models. As GPU processing power continues to improve and more lightweight models emerge,
we can expect these technologies to become more accessible and widely used. However,

19

significant challenges remain, such as the high computational demand of these models,
indicating a path for future research and development.

Challenges in Computer Vision
Computer vision, as a research area, brings forth numerous challenges that test the

capabilities of existing machine learning techniques and technologies. Real-time image
processing with machine learning stands as a significant hurdle. It requires handling
high-dimensional data instantaneously and efficiently, which demands substantial computational
power and intricate algorithms.

Training deeper models introduces another complication, needing copious amounts of
accurately labeled data. Gathering and labeling such large datasets, particularly for complex
images, is labor-intensive, time-consuming, and costly. Environmental variability also adds to the
difficulty. Photos taken under different lighting, from varying angles, and in diverse settings
introduce inconsistencies that can confound models, affecting their ability to interpret and
analyze images correctly. Moreover, understanding context in an image is a daunting task. It's not
just about recognizing the objects within the image; it's also about understanding their
interrelationships, the roles they play within the scene, and the overall narrative of the image.
Additional challenges lie in handling occlusions, changes in object appearance, scale variation,
and 3D perception. Furthermore, developing systems that can learn continually without human
intervention and making sense of dynamic and rapidly changing scenes also pose significant
challenges.

20

References
[1] C. Harris, M. Stephens, and others, “A combined corner and edge detector,” in Alvey vision
conference, 1988, vol. 15, no. 50, pp. 10–5244.
[2] D. Mistry and A. Banerjee, “Comparison of feature detection and matching approaches: SIFT
and SURF,” GRD Journals-Global Research and Development Journal for Engineering, vol. 2,
no. 4, pp. 7–13, 2017.
[3] J. Canny, “A computational approach to edge detection,” IEEE Transactions on pattern
analysis and machine intelligence, no. 6, pp. 679–698, 1986
[4] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial intelligence, vol. 17,
no. 1–3, pp. 185–203, 1981.
[5] R. A. Hamzah and H. Ibrahim, “Literature survey on stereo vision disparity map algorithms,”
Journal of Sensors, vol. 2016, 2016.
[6] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part I,” IEEE
robotics & automation magazine, vol. 13, no. 2, pp. 99–110, 2006.
[7] M. Z. Alom et al., “The history began from alexnet: A comprehensive survey on deep
learning approaches,” arXiv preprint arXiv:1803.01164, 2018.
[8] L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and Applications, vol. 5, pp.
64–67, 2001.
[9] B. Wu et al., “Visual transformers: Token-based image representation and processing for
computer vision,” arXiv preprint arXiv:2006.03677, 2020.
[10] R. Shanmugamani, “Deep Learning for Computer Vision,” Packt Publishing, 2018
[11] Y. Wang et al., “A comprehensive review of modern object segmentation approaches,”
arXiv preprint arXiv:2301.07499v1
[12] R. Sagar, “How the deep learning approach for object detection evolved over the years,”
Analyticsindiamag.com,
https://analyticsindiamag.com/how-the-deep-learning-approach-for-object-detection-evolved-ove
r-the-years/ (accessed Jun. 20, 2023)
[13] A. Balasubramaniam and S. Pasricha, “Object Detection in Autonomous Vehicles: Status
and Open Challenges,” arXiv preprint arXiv:2201.07706
[14] A. Karaka, “Object Detection with RetinaNet,” wanda.ai,
https://wandb.ai/site/articles/object-detection-with-retinanet (accessed Jun. 22, 2023)
[15] M. Oudah, A. Al-Naji, and J. Chahl, “Hand gesture recognition based on Computer Vision:
A review of techniques,” Journal of Imaging, vol. 6, no. 8, p. 73, 2020.
doi:10.3390/jimaging6080073
[16] Y. LI, J. HUANG, F. TIAN, H.-A. WANG, and G.-Z. DAI, “Gesture interaction in virtual
reality,” Virtual Reality &amp; Intelligent Hardware, vol. 1, no. 1, pp. 84–112, 2019.
doi:10.3724/sp.j.2096-5796.2018.0006
[17] O. Kopuklu, A. Gunduz, N. Kose, and G. Rigoll, “Real-time hand gesture detection and
classification using convolutional Neural Networks,” 2019 14th IEEE International Conference

21

on Automatic Face &amp; Gesture Recognition (FG 2019), 2019.
doi:10.1109/fg.2019.8756576
[18] P. N. Huu and T. Phung Ngoc, “Hand gesture recognition algorithm using SVM and Hog
Model for control of Robotic System,” Journal of Robotics, vol. 2021, pp. 1–13, 2021.
doi:10.1155/2021/3986497
[19] N. Bargellesi, M. Carletti, A. Cenedese, G. A. Susto, and M. Terzi, “A random forest-based
approach for hand gesture recognition with wireless wearable motion capture sensors,”
IFAC-PapersOnLine, vol. 52, no. 11, pp. 128–133, 2019. doi:10.1016/j.ifacol.2019.09.129
[20] M. Z. Alksasbeh et al., “Smart hand gestures recognition using k-NN based algorithm for
video annotation purposes,” Indonesian Journal of Electrical Engineering and Computer Science,
vol. 21, no. 1, p. 242, 2021. doi:10.11591/ijeecs.v21.i1.pp242-252
[21] Dag Eklund, Ilias Siniosoglou, Anna Triantafyllou, Athanasios Liatifis, Dimitrios Pliatsios,
Thomas Lagkas, Vasileios Argyriou, Panagiotis Sarigiannidis, May 30, 2023, "Virtual Reality
Gesture Recognition Dataset", IEEE Dataport, doi: https://dx.doi.org/10.21227/kyzx-m451
[22] Y. Zhang, C. Cao, J. Cheng and H. Lu, "EgoGesture: A New Dataset and Benchmark for
Egocentric Hand Gesture Recognition," IEEE Transactions on Multimedia (T-MM), Vol. 20, No.
5, pp. 1038-1050, 2018
[23] W. Zhao, Y. Rao, Z. Liu, B. Liu, J. Zhou, and J. Lu, “Unleashing text-to-image diffusion
models for visual perception,” arXiv preprint arXiv:2303.02153, 2023.
[24] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision
benchmark suite,” in 2012 IEEE conference on computer vision and pattern recognition, 2012,
pp. 3354–3361.
[25] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation and support
inference from rgbd images.,” ECCV (5), vol. 7576, pp. 746–760, 2012.
[26] Z. Xie, Z. Geng, J. Hu, Z. Zhang, H. Hu, and Y. Cao, “Revealing the dark secrets of masked
image modeling,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 14475–14485.
[27] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.
[28] A. Vaswani et al., “Attention is all you need,” Advances in neural information processing
systems, vol. 30, 2017.

22

