Safe Handling of Intersection Events under other agents’ Latent
Driving styles (SHIELD)

Joonwon Kang!, Tae Yang?

Abstract—This work investigates how to tackle the prob-
lem of an ego vehicle navigating an uncontrolled four-way
intersection where each road user possesses a latent driving
style. Initially, the problem is formulated as a fully observable
Markov Decision Process (MDP), assuming the driving styles
of other road users are known. Two approaches are explored:
solving a combined MDP involving the ego vehicle and a subset
of nearby road users, and solving individual MDPs for each
road user and the ego vehicle. The study is then extended
to a more realistic setting where driving styles are unknown,
reformulating the problem as a Partially Observable Markov
Decision Process (POMDP). To address this, we compare two
methods: directly solving the problem using a Deep Recur-
rent Q-Network (DRQN) and estimating latent driving styles
using an LSTM model to use pre-trained Q-values of MDPs
again. The results demonstrate how knowledge and inference
of driving styles and interactions between vehicles influence
decision-making and safety in autonomous navigation.

I. INTRODUCTION

The increasing adoption of autonomous vehicles (AVs)
presents significant challenges for ensuring safety and ef-
ficiency in complex traffic scenarios [1]. Among these, nav-
igating uncontrolled four-way intersections poses a critical
problem. Such intersections lack explicit signaling, requiring
AVs to make real-time decisions while interacting with
other road users. Complicating matters further, road users
often exhibit diverse and latent driving styles, ranging from
aggressive to cautious, which are typically unknown to the
ego vehicle. Failure to account for these variations can lead to
suboptimal decision-making, potentially resulting in delays
or collisions. Consequently, some articles demonstrated the
benefits of understanding these latent states [2] and outlined
methods to estimate them [3], [4].

This paper explores the problem of autonomous decision-
making in the context of uncontrolled four-way intersections,
focusing on how latent driving styles of road users affect
the ability of the ego vehicle to make safe and effective
decisions. The study starts by formulating the problem as
a fully observable Markov Decision Process (MDP), where
the ego vehicle has full knowledge of the driving styles
of other road users. Two methods are explored within the
MDP framework: (1) solving a combined MDP for the ego
vehicle and a set number of road users, and (2) solving
individual MDPs for the ego vehicle and each road user. Both
methods are evaluated to assess the impact of considering the
interaction between other vehicles explicitly.

1J. Kang is with the Department of Mechanical Engineering, Stanford
University, CA, USA urgemini@stanford.edu

2T. Yang is with the Department of Computer Science, Stanford Univer-
sity, CA, USA taeyang@stanford.edu

Next, we extend the problem to a more realistic setting by
introducing a Partially Observable Markov Decision Process
(POMDP), where the ego vehicle is unaware of the other road
users’ driving styles. Instead, the ego vehicle must infer these
latent behaviors from observable states, which introduces a
new layer of complexity. We propose two methods to tackle
the POMDP: (1) a Deep Recurrent Q-Network (DRQN) that
operates directly under partial observability without any prior
knowledge of driving styles, and (2) an LSTM-based latent
state estimation model that estimates hidden driving styles
while using previously learned Q-values.

The primary contributions of this paper include a compar-
ative study of two MDP-based decision-making approaches
under full observability, the extension of the decision-making
problem to a POMDP framework to handle hidden driving
styles, and a comprehensive analysis comparing MDP and
POMDP solutions in the context of intersection navigation
with latent driving styles. These contributions aim to advance
the development of decision-making frameworks that en-
hance the safety and efficiency of AVs in complex, partially
observable traffic scenarios.

II. PROBLEM FORMULATION
A. Simulation Environment Setup

The simulation environment used in this study models an
uncontrolled four-way intersection in SUMO (Simulation of
Urban MObility). The intersection consists of four incoming
and four outgoing roads, each with a speed limit of 40km/h.
The roads are configured with multiple lanes, and traffic
conditions vary based on the behaviors of individual road
users.

In this setup, road users are generated randomly with
assigned driving styles determined by an “impatience” pa-
rameter [5]. This impatience parameter, which can be either
1 (impatient) or O (patient), governs their driving behavior:

« Impatient Vehicles: Accelerate more aggressively and

make rapid decisions when navigating through the in-
tersection.

« Patient Vehicles: Drive more conservatively, with

slower acceleration and cautious decision-making.

These behavioral differences introduce dynamic uncer-
tainty into the environment, requiring the ego vehicle to
adapt and react appropriately to the diverse driving styles
of surrounding road users.

The simulation is configured to progress in discrete time
steps of 0.1s. During each step, the ego vehicle’s acceleration
is controlled programmatically through an external interface
that interacts with the SUMO simulation.

TABLE I
COMPONENTS OF THE MDP FORMULATION

Component Description

S: State Space Ego Variables: Simulation step, position (x,y),
speed, acceleration.

Road User Variables: For each road user, po-
sition (x,y), speed, acceleration, impatience pa-
rameter.

A: Action Space Discrete acceleration levels available to the ego

vehicle: [-3,—-2,-1,0,1,2,3].

SUMO simulator runs the environment. Our
model-free approach learns from state transitions
and rewards.

T: Transition Model

R: Reward Function | Rewards safe and efficient navigation; penalizes
collisions, speed-limit violations, and excessive

delays.

¥: Discount Factor Balances near-term and future rewards; Y= 0.95.

Fig. 1. Illustration of the SUMO simulation environment. The ego vehicle
navigates through the intersection, interacting with road users of varying
impatience levels.

Figure 1 provides a visual representation of the simulation
environment. The ego vehicle, highlighted in yellow, starts
from the west and aims to safely navigate through the
intersection to its destination. Surrounding road users are
color-coded based on their impatience levels (Green: Patient
vehicles, Red:Impatient vehicles).

The simulation framework, with its stochastic generation
of road users and real-time interaction, provides a robust plat-
form for testing and refining reinforcement learning policies.

B. MDP

The ego vehicle’s navigation through an intersection is
modeled as a Markov Decision Process (MDP), defined by
the tuple (S,A, P,R,y), where the components are outlined in
Table I.

The reward function is defined to encourage safe and
efficient navigation through the intersection. Table II outlines
the key components of the reward function.

TABLE I
REWARD FUNCTION DETAILS

Event Reward/Penalty
Collision with another vehicle —100

Inducing strong decel of another vehicle | —10

Successfully passing the intersection +10

Speed exceeds the limit (40km/h) Proportional penalty

(=0.1- (V - Vmax))
Stopping far from the stop line -1
Time consumed to pass the intersection

—0.5- simulation_step

The SUMO simulator employs a complex, deterministic
traffic simulation model that incorporates stochasticity in
road user behavior. The next actions of each vehicle are heav-
ily influenced by interactions with other vehicles, introducing
significant uncertainty into state transitions.

A straightforward solution for this issue might be a neural
network that can estimate the transition probability for the
next state. However, the state space is still too large to expect
a neural network to give the right transition probabilities.
Also, regarding our limited time window, it would take too
long to do both transition neural network training and policy
iterations.

Therefore, this MDP formulation is solved using a model-
free approach, especially Deep Q-Learning (DQN), which
utilizes the neural network to learn Q-value function directly
from state transitions and rewards without requiring knowl-
edge of T(s'|s,a) [6].

This general setup is utilized across two distinct ap-
proaches:

o Combined MDP: A single MDP includes the ego
vehicle and a fixed number (N) of nearby road users,
creating a high-dimensional state space.

+ Independent MDPs: Separate MDPs are solved for
each road user, where the state space only includes the
ego vehicle and one road user at a time. This reduces
state dimensionality at the cost of independent policy
solutions.

C. POMDP

Building on the previous MDP formulation, the naviga-
tion problem is extended to a Partially Observable Markov
Decision Process (POMDP) to address uncertainty in road
user behavior. Specifically, the impatience level of road users,
which influences their driving behavior, is treated as a hidden
state that cannot be directly observed.

In this framework, the ego vehicle seeks to infer hidden
states from observable variables, such as position, speed, and
acceleration, while making decisions to optimize navigation
performance. Like the unknown state transitions in the MDP
formulation, it is challenging to obtain the observation model
for this process. Therefore, we utilized model-free methods.

Again, with the same condition that the impatience levels
of other vehicles are hidden, two different approaches were
used.

« DRQN: A single observation space includes the ego
vehicle and a fixed number (N) of nearby road users.

« DQN with impatience-estimating LSTM: Aims to
convert POMDPs back into MDPs by estimating the
impatience of each vehicle using Long Short-Term
Memory (LSTM) networks. The reconstructed state
with the estimated impatience is used to obtain Q-values
from a DQN that is employed to solve independent
MDPs.

III. METHODS
A. MDP

As explained in Section II, two different approaches were
tested to solve the navigation problem. Both approaches
share the same action space and reward model, but differ
in the state space configuration.

The following part will explain the two different ap-
proaches to solving the previously defined MDP in more
detail.

1) Combined MDP: In this approach, the ego vehicle
solves a single, high-dimensional MDP that accounts for the
ego vehicle and up to 20 vehicles in the simulation. The
state space includes the physical states of the ego vehicle and
the first 20 vehicles that appear in the simulation, ensuring
consistency by always considering the road users in the order
they are generated. This method assumes that considering 20
vehicles is sufficient for the given task, where the ego vehicle
navigates an intersection.

The state space for each MDP is defined as follows:

s={t, g0} €S (D

where g; = {x;,yi,vi,a;,imp;} represents the physical state
of each vehicle, imp; € [0,1] indicates the impatience of
the vehicle, and i ranges from 1 to 20. Each element in
gi except imp; is rounded to the first decimal place. For
ego, we do not care about its impatience level. Therefore,
Gego = {Xego:Yegos Vego, dego } ONLY represents its physical state.
The state space thus has a dimensionality of 5+ 5 x 20 =
105, with each vehicle’s state including position, speed,
acceleration, and impatience. If fewer than 20 vehicles are
present, the missing vehicles’ states are padded with zeros
to maintain consistency.

The decision-making algorithm using this approach is
shown in Algorithm 1. The algorithm starts by collecting the
current state. The ego vehicle then selects an action based
on the estimated Q-values from the DQN network. The state
and action are updated as the simulation progresses.

Gegos 491, 42,

Algorithm 1 Decision-making algorithm to solve Combined
MDP
ego_state,v_states < reset|()
while —rerminate(ego_state,v_states) do
state < ego_state +Y ¢, sares V-State
a,Q < DON((state)
ego_state,v_states < next_step(action)
end while

The DQN architecture includes three hidden layers. The
first hidden layer has 64 neurons and uses the ReL.U acti-
vation function. The second hidden layer has 128 neurons,
also using ReLU activation. The third hidden layer has 64
neurons and uses ReLU activation as well. The output layer
consists of a number of neurons equal to the number of
possible actions. Each neuron corresponds to the Q-value for
a specific action, and the output layer uses a linear activation
function to produce these Q-values.

The DQN is trained to approximate the Q-values for each
state-action pair. The target Q-values are updated according
to the Bellman equation, and the loss function used is the
mean squared error (MSE) between the predicted Q-values
and the target Q-values. The optimizer employed is Adam
with a learning rate of 0.001.

Training occurs over 5000 episodes. During training, an
experience replay buffer stores past experiences, allowing
the agent to learn from a diverse set of transitions. To
ensure stability during training, the Q-network periodically
updates its target network. This structure allows the agent
to process high-dimensional state inputs, including the ego
vehicle and surrounding vehicles, and learn the best action to
take when navigating the intersection despite the complexity
and uncertainty of vehicle interactions.

2) Solving Separate MDPs: In this approach, the ego
vehicle solves MDPs for each surrounding vehicle. For
instance, with four other vehicles present, four MDPs need
to be addressed. For each MDP, the state space is defined as
follows:

§= {tv Gegos qveh} es 2)

This equation also follows the notation introduced in
Section ITI-A-1. To be clear, the state space has a dimension
of 10.

As explained in Section II-B, DQN was chosen to learn the
Q-value function directly from the state input. The difference
with the previously explained approach is that there can be
multiple state inputs per scene and the ego has to choose the
action between the resultant actions from each state. Since
the safest decision is to do its best for the most dangerous
state, we made ego choose the best action of the worst state.

The decision-making algorithm using this method is
shown in Algorithm 2. For functions shown in the 2, reset()
runs the simulation until ego becomes apparent for the
first time and returns the state of ego and other vehi-
cles, terminate(ego_state,v_states) return bool value about
whether the current scene satisfies the terminate condition,
and next_step(action) returns the next state of ego and
vehicles by running the simulation for one step with given
ego acceleration value.

The structure and training methods used for the DQN in
this section are the same as those described in Section III-
A-1, , allowing for an easier comparison of the performance
between the two methods. Additionally, the maximum num-
ber of episodes for training the network was set to 5,000,
which remains consistent across both methods. However, this
approach accumulates more data because it is capable of
collecting information from multiple states at each time step.

B. POMDP

As discussed in Section II, two approaches were tested to
solve the navigation problem under a Partially Observable
Markov Decision Process (POMDP), where impatience is
unobserved. The following sections will explain these ap-
proaches in more detail.

Algorithm 2 Decision-making algorithm to solve MDPs per
each vehicle
ego_state,v_states < reset()
while —terminate(ego_state,veh_states) do
states < |ego_state + v_state | v_state € v_states|
worstQ < —oo
action <0
for state € states do
a,Q < DON(state)
if O <worstQ then
worstQ < Q
action <—a
end if
end for
ego_state,v_states < next_step(action)
end while

1) DRON: In a Partially Observable Markov Decision
Process (POMDP), the agent operates with incomplete
knowledge of the environment. Specifically, the agent’s ob-
servation does not fully describe the state of the system,
which means the agent must make decisions based on a
partial view of the environment. To handle this challenge,
a Deep Recurrent Q-Network (DRQN) is employed, allow-
ing the agent to process sequential observations and infer
unobserved components of the environment [7], such as the
driving styles of other vehicles.

The DRQN architecture consists of a recurrent neural
network (RNN) layer, typically implemented using LSTM
units, which enables the agent to maintain a memory of
past observations. This is critical in environments where the
current state does not fully capture the history of the system.

a) Architecture of DRON: The DRQN architecture is
composed of the following layers:

o Input Layer: At each time step, the agent receives
an observation vector. This observation includes in-
formation about the ego vehicle’s state and surround-
ing vehicles, such as their positions, velocities, and
accelerations. Due to partial observability, the agent
cannot directly observe the driving styles or future
intentions of other vehicles. To handle varying numbers
of surrounding vehicles, the observation is padded to a
fixed length (up to a maximum of 20 vehicles).

o Recurrent Layer (LSTM): The core feature of the
DRQN is the recurrent layer, which uses an LSTM
network to process the sequence of observations. The
LSTM unit maintains a hidden state, /,, that stores the
memory of past observations. This allows the agent
to capture temporal dependencies and build a better
understanding of the environment’s dynamics, such as
predicting the movements of other vehicles, even with-
out knowing their future actions.

o Fully Connected Layer: After processing the sequence
of observations through the LSTM, the final hidden state
is passed through a fully connected layer to predict the
Q-values for each possible action. The agent chooses

actions based on the Q-values produced by the network.
o Action Selection: The agent selects an action by fol-
lowing an epsilon-greedy policy similar to the previous

DON.

b) Sequential Processing of Observations: The LSTM
layer is crucial for capturing the temporal dependencies in
the sequence of observations. As the agent receives a new
observation at each time step, the LSTM updates its hidden
state, which allows it to retain information about previous
observations. This enables the agent to learn patterns over
time, such as how other vehicles typically behave in certain
situations, without explicitly observing their actions.

¢) Training and Reward Mechanism: During training,
the DRQN uses experience replay to store and sample
past experiences in the form of observation-action-reward-
next observation tuples. The agent learns by minimizing
the Temporal Difference (TD) error. The DRQN updates its
network weights to minimize the TD error, improving its
ability to predict the best actions over time.

Algorithm 3 DRQN Algorithm
Initialize DRQN agent and replay buffer
while simulation running do
action, hidden _state —
DRQN (observation, hidden_state)
Execute action, get reward
Store transition in buffer
agent .train()
if update condition then
Update target network
end if
end while

2) DON with Impatience-estimating LSTM: This ap-
proach uses a impatience-estimating LSTM to infer the
hidden state of impatience. When impatience can be inferred
and if we can believe that result, it can be changed to MDPs
again. This allows us to reuse the DQN trained in Section
1I1I-B-2.

We assume that all other state variables are fully ob-
servable, except for the impatience level of each vehicle.
Therefore, estimating the state for these variables could be
a waste of resources. Drawing from the concept of Mixed
Observable Markov Decision Processes (MOMDPs) [8], we
focus solely on the hidden state, which is the impatience
level of each vehicle. However, we cannot use model-based
MOMDRP solvers since both the state transition model and
the observation model remain unknown. Consequently, we
reformulate the problem as a Markov Decision Process
(MDP) after estimating the impatience levels, allowing us
to utilize Deep Q-Networks (DQN) once again.

Solving this problem is akin to addressing a POMDP
focused on belief updates related to impatience, even though
it may not yield an exact solution. The state space consists
solely of one variable: the impatience level of each vehicle.
The observable state encompasses the historical physical
states of all vehicles, including the ego vehicle. There are

no actions to take, and the transition model can be described
as T(s'|s) = 1(s = s') assuming that the impatience of the
vehicle remains constant throughout the episode. With this
formulation, LSTM was chosen to estimate the impatience
level since it is well known for its performance on time-
dependent inputs and used in the article using a similar
approach [3]. The LSTM model designed for estimating
impatience is structured as follows:

« Input Layer: Accepts the concatenated features of the
target vehicle and surrounding vehicles of that vehicle
over 15-time steps.

« Masking Layer: Handles variable sequence lengths by
masking irrelevant inputs, when only a limited history
of the vehicle is available.

« LSTM Layer: Captures temporal dependencies and
predicts the impatience state. The layer was set to have
128 hidden units.

« Output Layer: Outputs the belief state representing the
estimated impatience probabilities.

The input for the LSTM model is carefully structured
to capture the relative positions and states of vehicles sur-
rounding the target vehicle. At each time step, the input
vector starts with the state of the target vehicle itself. The
next slot is allocated to the vehicle directly in front of the
target vehicle. The subsequent two slots are reserved for
vehicles approaching from the left, while the final two slots
are designated for vehicles approaching from the right. This
input vector formulation can be expressed as follows:

{pveha Pfronts Pleftys Pleftyy Pright;s prightz}

All components in this expression originate from the same
time step, and p; = {x;,yi,vi,a;} is used instead of g; since the
impatience level of each vehicle is unobservable. If there are
no vehicles in any of these positions, the corresponding slots
are filled with zeros. This structured approach ensures that
the LSTM model receives a consistent and comprehensive
representation of the traffic environment surrounding the
target vehicle. The LSTM model was trained with the data
from 1000 episode runs for 200 epochs.

The entire decision-making process used in this method is
expressed in Algorithm 4. Since the impatience levels of each
vehicle are unobservable, ego can only get information about
the physical state of each vehicle, expressed as vp_stares.

To utilize history of each vehicle to estimate the im-
patience level of each vehicle, these physical states are
tracked using v_history, and updated per timestep us-
ing update_v_history(v_history,ego_state,vp_states). Since
the relative position matters in building the input vector
for the LSTM, histories of all vehicles in the current
scene are divided depending on its current direction, using
build _direction_dict(ego_state,vp_states). With this direc-
tion dictionary, vehicles on front, left and right can be easily
defined for each vehicle.

When the probability of being impatience is given, the
impatience level of each vehicle is set to 1 if the probability
is higher than 0.4. This metric was used to make safer

decisions if there is high uncertainty on the impatience level
because assuming an impatient vehicle to be patient can be
dangerous. With the estimated impatience level, the entire
state can be constructed and the rest of the decision-making
process is the same as in Section III-B-2.

Algorithm 4 Decision-making algorithm to solve POMDPs
per each vehicle with estimated belief on impatience

ego_state,vp_states < reset()
v_history < {}
while —terminate(ego_state,vp_states) do
update_v_history(v_history,ego_state,vp_states)
N,S,W,E « build _direction_dict(ego_state,vp_states)
imp_belief < {}
for veh, hist € v_history do
if veh # ego then
F,L,R «+ surrounding vehs(veh,N,S,W E)
inputs + []
for ¢ € len(hist) do
input < hist[t] + Ft] + L[t] + R]t]
inputs.append (input)
end for
imp_belief[veh] < LSTM (inputs)
end if
end for
worstQ < —oo
action <0
for veh, p_state € vp_states do
a,Q < DON (ego_state, p_state,imp_belie f[veh))
if O <worstQ then
worstQ < Q
action <—a
end if
end for
ego_state,vp_states < next_step(action)
end while

IV. RESULTS

The evaluation results for the different approaches are
summarized in Table III. This table presents key metrics
such as the number of successful passes, average time
on successful passes, collisions, speedings, stoppings, and
emergency stoppings from road users. Each evaluation is run
on 500 episodes.

In the following subsections, we analyze and compare the
results for each approach, focusing on the performance of
methods under MDP and POMDP frameworks, as well as
the contrast between these two types of decision processes.

A. Between MDP Methods

Table III indicates slightly better navigation performance
for the Independent DQN than that of Combined DQN, in
terms of both safety and efficiency. However, the Combined
DQN maintains better speed compliance.

The performance differences stem from the distinct ap-
proaches of the two methods. The Combined DQN integrates

Metric Combined DQN | Indepedent DQN | Combined DRQN | Est. Impatience DQN
Successful Passes 442 454 439 449
Average Time on Successful Passes (s) 6.81 6.0 9.14 6.0
Number of Collisions 58 46 61 51
Average Timelength Exceeding the Speed Limit (s) 1.39 2.25 1.66 2.25
Average Timelength of Stopping at the Wrong Place (s) 0.13 0.1 0.47 0.1
Average Number of Emergency Stoppings from Road Users 0.79 0.77 0.97 0.64
TABLE III

COMPARISON OF EVALUATION RESULTS FOR COMBINED DQN, SEPARATE DQN, COMBINED DRQN, AND DQN WITH ESTIMATED IMPATIENCE.

inputs from up to 20 vehicles in a single Markov Decision
Process (MDP), which can lead to suboptimal decisions
due to its high-dimensional state space. This complexity
makes effective learning difficult, especially with limited
training data, and hinders the model’s ability to generalize.
Although it handles speed compliance well, which is clearly
represented in the state, it struggles to manage interactions
between vehicles effectively.

In contrast, the Independent DQN focuses on individual
MDPs for each vehicle, prioritizing safe maneuvers. By
managing smaller state spaces, it learns from available data
more efficiently, giving it a performance advantage.

B. Between POMDP Methods

For the approaches to solve the POMDP problem, DQN
with estimated impatience showed slightly better perfor-
mance on safety and much higher efficiency, while the
Combined DRQN was better at obeying the speed limit.

The varied performance can be attributed to the underlying
methods of each approach. Despite leveraging historical data
to improve decisions, the Combined DRQN can still find it
difficult to manage the intricate dynamics of the environment
since the input space is too large, given limited amount of
data. Especially, LSTM is well known for its requirement for
huge amount of data [9].

Conversely, DQN with estimated impatience utilizes an
LSTM to only estimate the impatience levels of individual
vehicles. Therefore, it can focus more precisely on criti-
cal variables. After the impatience estimation, this method
leverages the values from the previously trained Independent
DQN, trained in much smaller state spaces. This approach
leads to enhanced performance, offering better efficiency and
safety.

C. Between MDP and POMDP Methods

When comparing MDP methods (Combined DQN and
Independent DQN) to POMDP methods (Combined DRQN
and Estimated Impatience DQN), the MDP methods gener-
ally demonstrate stronger performance in terms of navigation
and collision avoidance, as expected.

The performance difference is mainly due to the complex-
ity and data needs of POMDP methods, which use LSTM
and require substantial training data. For instance, training
the LSTM model in DQN with estimated impatience took
about 10 minutes per epoch, and the model had a 29%
error rate in estimating impatience during evaluations. This
indicates that the LSTM models for both POMDP methods

were insufficiently trained, resulting in weaker performance
compared to MDP methods.

Notably, the policy from the DQN with estimated impa-
tience, which is a POMDP method, outperformed the policy
from the Combined DQN. This difference in performance
could be attributed to the disparities between the Independent
DQN and Combined DQN. We can anticipate that the
performance gap resulting from misunderstandings of the
interactions between vehicles was larger than the gap caused
by misestimating the impatience level of each vehicle.

V. DISCUSSION

The results highlight the distinct advantages and trade-offs
of the various methods evaluated in both MDP and POMDP
frameworks. In terms of performance, the Independent DQN
offers superior efficiency and safety in simpler environments,
while the Combined DQN excels in speed regulation despite
its higher complexity. The DRQN and the DQN with es-
timated impatience show that handling partial observability
through memory-based and belief-estimation approaches can
continue to perform decision-making, although challenges
remain in fully capturing interactions and inferring hidden
states like impatience. Our findings indicate that understand-
ing the latent state of agents impacts both navigation safety
and efficiency. Interestingly, we observed that DQN using
inaccurate impatience information outperformed a combined
DQN that had complete visibility of impatience. This sug-
gests that it may be more advantageous to effectively manage
the observable state before concentrating on latent states, as
handling the observable state is significantly easier.

However, there are several key areas for improvement.
Future work can focus on refining reward engineering to
better balance safety and efficiency, enhancing environment
simulations to capture more complex traffic scenarios, and
leveraging more computing resources to optimize training
and model performance. Additionally, exploring advanced
architectures for belief updates and improving memory han-
dling could lead to more effective solutions for partially
observable environments.

In conclusion, while the current methods provide reason-
able policies for decision-making in traffic navigation, further
advancements in model sophistication and computational
resources will be crucial for improving performance and
applicability in real-world, complex environments.

(1]

(2]

(3]

VI. APPENDIX

o Joonwon Kang mainly worked on Independent DQN
and DQN with estimated impatience.

o Tae Yang mainly worked on Combined DQN and
DROQON.

REFERENCES

J. Wang, L. Zhang, Y. Huang, and J. Zhao, “Safety of autonomous
vehicles,” Journal of Advanced Transportation, vol. 2020, p. 13 pages,
2020. [Online]. Available: https://doi.org/10.1155/2020/8867757

Z.N. Sunberg, C. J. Ho, and M. J. Kochenderfer, “The value of inferring
the internal state of traffic participants for autonomous freeway driving,”
in 2017 American control conference (ACC). 1EEE, 2017, pp. 3004—
3010.

D. J. Phillips, T. A. Wheeler, and M. J. Kochenderfer, “Generalizable
intention prediction of human drivers at intersections,” in 2017 IEEE
Intelligent Vehicles Symposium (IV), 2017, pp. 1665-1670.

[4]

(51

(6]

(71

(8]

[]

S. Liu, P. Chang, H. Chen, N. Chakraborty, and K. Driggs-Campbell,
“Learning to navigate intersections with unsupervised driver trait infer-
ence,” in 2022 International Conference on Robotics and Automation
(ICRA). 1EEE, 2022, pp. 3576-3582.

German Aerospace Center (DLR), “Definition of vehicles, vehicle
types, and routes,” 2024, (Accessed: 2024-12-08). [Online]. Available:
https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types
%2C_and_Routes.htmlimpatience

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529-533, 2015.
M. Hausknecht and P. Stone, “Deep
for partially observable mdps,” 2017.
https://arxiv.org/abs/1507.06527

I. Chades, J. Carwardine, T. Martin, S. Nicol, R. Sabbadin, and
O. Buffet, “Momdps: a solution for modelling adaptive management
problems,” in Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 26, no. 1, 2012, pp. 267-273.

G. Van Houdt, C. Mosquera, and G. Ndpoles, “A review on the long
short-term memory model,” Artificial Intelligence Review, vol. 53, no. 8,
pp. 5929-5955, 2020.

recurrent
[Online].

g-learning
Available:

