

Autonomous Reconnaissance Robot for a Simulated
Disaster Environment

Taoran Liu

College of Engineering
Team Donatello

liu.taora@northeastern.edu

Azhar Hussain Quadri Syed
College of Engineering

Team Donatello
syed.azh@northeastern.edu

 Tae Hoon Yang
 College of Engineering

Team Donatello
yang.tae@northeastern.edu

Yin Wang
 College of Engineering

Team Donatello
wang.yin4@northeastern.edu

Abstract—In this project, Turtlebot3 is introduced and an
autonomous system is developed on the robot under ROS and
Ubuntu environments. The objective of the autonomous system
is performing reconnaissance to assist emergency workers by
creating a map of an unknown area and detecting all necessary
figures in it. The reconnaissance operation is divided into two
phases. In the first phase, the robot creates an occupancy grid
map as soon as possible based on Frontier exploration. In the
second phase, the robot starts to detect the figures ensuring the
camera is always oriented to the figures. The resulting map and
detected figures are provided and this verifies the accuracy and
efficiency of the strategy.

Keywords—AprilTags, TurtleBot3, localization, mapping

I. INTRODUCTION AND MOTIVATION
In disaster response, there are many risks for emergency

workers to operate their rescue mission. If there is a
reconnaissance robot that can survey the dangerous
environment and locate victims, it would help minimizing the
risks to the workers significantly. The robot should be able to
perform the reconnaissance in a complete autonomous system
when introduced into a close but initially unknown
environment. There are two functions that the robot must have
to achieve the reconnaissance objective. One is generating a
complete map of the environment using an occupancy grid
map and the other is locating any victims identifying their IDs
and poses (represented with respect to the map frame).
AprilTags are used to indicate the victims as stand-ins and
each of them has an unique ID. Turtlebot3 is chosen as a robot
development platform because it possesses proper
specifications to implement those functions.

II. PROPOSED SOLUTION

A. General strategy introduction
In order to generate the complete occupancy grid,

Frontier-based exploration is suggested.

Fig. 1 Frontier-based exploration [1]

As shown in the figure above, the robot explores the
environment following frontier centroids until there is no
more frontier left which means every area is searched in the

closed environment. SLAM is required for the exploration so
as to keep updating the occupancy grid map and localize the
robot. In ROS, many packages are already available to
execute this exploration. One of the implementations is using
the gmapping package for SLAM, explore_lite package for
Frontier-based exploration and move_base package for
driving the actual robot. The entire architecture is explained
in the figure below.

Fig. 2 ROS node architecture for Frontier-based exploration [2]

In order to identify the victims, a Pi camera on the robot
is used. Also, there is an existing package called apriltag_ros,
that reads images from the camera and outputs tag IDs and
poses when a tag is detected. Its overview is shown in the
figure below.

Fig. 3 Topics overview in the apriltag_ros package [3]

B. Problems
However, these two functions do not ensure that all the

tags are going to be detected by the camera because the
spinning lidar sensor can scan all around the robot while the
camera is at the fixed position looking in the forward
direction. The robot will not search every single corner of the
environment with the camera as the lidar will have finished
creating the map. Moreover, the tag measurement of the
camera might be rather noisy because the robot is moving and
the tags could be viewed in a distance which will increase the
noise in the measurement. These two problems have to be
resolved so as to thoroughly perform the robot’s tasks. Many
solutions are proposed to ensure detecting all tags. One
approach is rotating the robot to scan around with the camera
while creating the map. Another one is limiting the lidar’s
performance so that the robot could move in the range of the
accurate tag measurement. The other one is focusing more on
the information about the tags. It is specified that the tags are
“stand-ins” for simulated victims which means they are
always on walls or obstacles not just on some random ground
in the environment. This is found to be an inevitable
condition as the camera is not good at detecting the tags on
the ground when tested. Therefore, the rough locations of the
tags are informed which would be really useful when
planning the robot’s motion. This information ensures 100%
detection rate of all tags in the environment as the robot just

needs to survey the walls and surfaces of the obstacles
carefully.

C. Our strategy
Our strategy is to create the map as soon as possible to

figure out where the walls and obstacles are using the full
capability of the lidar sensor and the robot motion.
Subsequently, the path along the walls and obstacles will be
created based on the complete map. If the robot just moves
straight along the path, the camera is still not oriented toward
the possible tag areas. Thus, the camera is relocated to the side
of the robot as shown in the figure below so that it can now
follow the path and detect the tags at the same time.

Fig. 4 Frontier-based exploration

To resolve the second problem as to the noise of the tag
measurement, the camera is tested several times with different
tags to determine in what distance the tags are detected
accurately and this distance is taken into account when the
robot plans the tag detection path after creating the complete
map.

We try to use this method because we find the AprilTags
can not be detected very well on the ground with a flat angle.
So we dececided to put them on the wall and the side of the
obstacles.

III. CONSTRUCTION OF SYSTEM
In this part we want to show how we run the code. Run

roscore in the PC. Make sure to setup the ~/.bashrc file with
the right IP address of the PC and TurtleBot3 and
ROS_MASTER_URI and ROS_HOSTNAME as per the
instructions from the guide [4]

a) In the Turtlebot3, do the following:

l To bringup the turtlebot
run “roslaunch turtlebot3_bringup turtlebot3_robot.launch”

l To run the usb_cam_node
run “roslaunch usb_cam usb_cam-test.launch”

l To run the apriltag detection
run “roslaunch apriltag_ros continuous_detection.launch”

b) In the remote PC, do the following:

l To execute the move_base node
run “roslaunch turtlebot3_bringup turtlebot3_robot.launch”

l To execute the gmapping node
run “ roslaunch turtlebot3_slam turtlebot3_slam.launch”
l To execute the explore_lite frontier exploration,
run “roslaunch explore_lite explore.launch”
l To save the map
use command “rosrun map_server map_saver -f ~/map”
l To transform the camera
use the command “rosrun tf static_transform_publisher

0.03 0 0 1.57 0 0 base_link usb_cam 100”
Since our camera is mounted on the right side of the robot,

the camera frame has rolled 90 degrees with respect to the
base frame.
l Starts to record tag IDs and poses into a bag file

use the command “rosbag record [tagID] [tagPose]”
l To generate the route, and do the route following driving

Algorithm 1
Input (map) Output(route) black=1 white=0 gray=2

1: Generatemap{map.png}
2: Turn into V={𝑐𝑜𝑙𝑜𝑟}!∗#
3: For every 𝑉$% color == black
4: 𝑉$:$←$()	%:%←%() . 𝑐𝑜𝑙𝑜𝑟 = 𝑔𝑟𝑎𝑦
5: For every 𝑉$% color == gray
6: 					𝑉$% . 𝑐𝑜𝑙𝑜𝑟 = 𝑏𝑙𝑎𝑐𝑘
7: For every 𝑉$% color == black
8: If (𝑉$%←(,-,(-). 𝑐𝑜𝑙𝑜𝑟 == 𝑤ℎ𝑖𝑡𝑒)
9: 					𝑉$% . 𝑐𝑜𝑙𝑜𝑟 = 𝑔𝑟𝑎𝑦
10: For every 𝑉$% color == gray
11: R: r(x,y,0)=(i,j,0)
12: Return R

Algorithm 2 13: 14:
1: Route following (R)
2: For every R$
3: find the newest R%
4: do navigation (from R$ → R%)
5: Delete R%
6: If R$ = ∅
7: Return 0

l Once the route following is done, stops recording the tag
data and print the saved data from .bag file

“time ros_readbagfile <mybagfile.bag> [tagID] [tagPose]”
l To view the output of the usb_cam_node and

/tag_detections node
use the command “rqt_image_view”

A. Move_base execution
The move base node is a ROS interface for configuring,

operating, and interfacing with a robot's navigation stack.
Above is a high-level view of the move base node and its
interactions with other components. Blue nodes differ
depending on the robot platform, gray nodes are optional but
offered for all systems, and white nodes are mandatory but
also provided for all systems. The move base node is a ROS
interface for configuring, operating, and interfacing with a
robot's navigation stack. Above is a high-level view of the
move base node and its interactions with other components.
Blue nodes differ depending on the robot platform, gray nodes
are optional but offered for all systems, and white nodes are
mandatory but also provided for all systems. The move_base
node links together a global and local planner to accomplish
its global navigation task. In the absence of dynamic barriers,
the move base node will finally reach its goal tolerance or

report failure to the user. When the robot believes itself to be
stuck, the move base node may optionally undertake recovery
behaviors.

The move_base package implements an action that, given
a destination in the world, attempts to attain it using a mobile
base. To complete its global navigation duty, the move_base
node connects a global and local planner. The move_base
node additionally keeps two costmaps, one for the global
planner and one for the local planner, which are used to
navigate.

We chose move_base since it is the foundation of the
navigation algorithm. move_base is a package which
integrates several components of navigation, each of which
complies to a common API provided in the ROS standard.
This standard interface enables the user to simply construct
their own algorithms for each component of robotic
navigation (Local and Global planning, Recovery, Costmaps).

Fig. 5 Navigation Stack Setup[5]

To clear out space, the move base node will do the
following steps by default: The robot's map will first be
cleansed of obstructions outside of a user-specified region.
The robot will then, if possible, undertake an in-place rotation
to free out space. If this too fails, the robot will more
aggressively clear its map, eradicating all obstructions outside
of the rectangular region in which it can rotate in position.
Then there will be another in-place rotation. If all of this fails,
the robot will deem its goal to be impossible and will alert the
user that it has aborted. The recovery behaviors option can be
used to configure these recovery_behaviors, and the
recovery_behavior_enabled parameter can be used to disable
them.

Fig. 6 Move base default recovery behaviors[6]

B. SLAM Implementation
The gmapping package includes a ROS node named

slam_gmapping that performs laser-based SLAM
(Simultaneous Localization and Mapping). You may produce
a 2-D occupancy grid map from laser and posture data
gathered by a mobile robot using slam_gmapping.

ROS can assist you in tracking coordinate frames
throughout time. It comes with a distinct message type:
tf/Transform and is always bound to one topic: /tf. The
package for it is tf2 - the transform library. Message
tf/Transform contains transformation (translation and rotation)
between two coordinate frames, as well as the names of both

frames and a timestamp. Publishing to /tf is done in a different
method than to any other topic, we will build tf publisher in
the example.

Fig. 7.1 Gmapping Slam in gazebo simulation

Fig. 7.2 Real World mapped using Gmapping

C. Frontier Exploration
 In ROS it is possible to explore the environment with use of
occupancy grid frontiers. One of the nodes that perform this
task is explore_server node from frontier_exploration
package. This node uses occupancy grid e.g. created by
slam_gmapping and publishes goal position to
/move_base/goal topic subscribed by path planner e.g.
move_base node.

Fig. 8 Move base default recovery behaviors[7]

D. AprilTag Detection
In this part, we use an usb camera in combination with a

package from ROS to detect all the AprilTags that as
substitutes for our victims. When the robot detects an apriltag
we can get the information that contains the tag’s ID and its
pose relative to the camera. Then we transform this pose to

map frame and add it to a list of all tags that have been
detected already.

a) AprilTag recognization: The whole design of this
detect algorithm is that we do edge detection first and find the
quadrilateral, after the homography we go for the recognize
the tag stage.

Fig. 9 Design of tag detect algorithm [8]

We will use aprilTag_ros package to realize this part.
Apriltag is a visual reference library and is widely used in VR,
robot, camera calibration and other fields. Through specific
two-dimensional code marks, the target position can be
quickly detected and the relative position can be calculated in
real time. The apriltags2_ros package had already renamed
by apriltag_ros but the function is same as before. In this
figure, we can see this package received /camera/image_rect
topic and /camera/camera_info topic. Then through its two
configuration files tags.yaml and settings.yaml, it publishes
/tf, /tag_detections and /tag_detections_image these three
topics. The /tf topic contains the position and direction data
of each detected QR code relative to the camera.
/tag_detections includes a custom message tag ID, which is
mainly used to detect a cluster of tag bundles. In our project,
we choose tag36h11 family and custom 6 tags information in
it. The information of /tag_detections_image is same as
/camera/image_rect what different is that we use this to
highlight the label position on the output image in real time.

b) Pose estimation of the AprilTags: Now we can get
the AprilTags's information in the frame of the robot’s
camera, which is published to the tag_detections topic.
However, for this project, our robot have to estimating the
locations of the AprilTags in the environment. Therefore, we
need to transform the apriltag pose with respect to the map
frame. If we want the global pose of an AprilTag we should
understand the relation between these two frame:

Fig. 10 Frame of two coordinate system

As this figure shows, the world coordinate system is
what we want. We have already obtained a current estimate
of the robot’s pose from the world frame provided by
gmapping. The camera coordinate system takes the camera
lens (optical center) as the coordinate origin. The optical

axis as the z-axis, in the right hand coordinate system, the
thumb downward, pointing to the y-axis, the index finger as
the z-axis, and the middle finger as the x-axis. Theoretically,
the x-axis and y-axis should be parallel to the x and y in the
image, and the image we selected here uses the upper left
corner as the origin, the x-axis positive direction as the right,
and the y-axis positive direction as the bottom and these
belongs to three-dimensional data.

Rotation in 3D will help us to realize the frame change.
It also be defined as linear transformations, although
parameterizing them is not as simple as in 2D. The space of
3D rotations is known as the special orthogonal group
𝑆𝑂(3) . A rotation in 3D can be represented by following
matrix equation

															𝐩′=𝑅𝐩 (1)

Here p is the original point, p' is the transformed point
and 𝑅 is a 3×3 rotation matrix.

𝑅 = =
𝑥! 𝑦! 𝑍!
𝑥# 𝑦# 𝑍#
𝑥0 𝑦0 𝑍0

@												 (2)

Here (𝑥!,	𝑥#,	𝑥0) give the coordinates of the new 𝑋
axis in the old frame, (𝑦!,	𝑦#,	𝑦0) gives the coordinates of
the new 𝑌 axis, and (𝑍!,	𝑍#,	𝑍0) gives the coordinates of
the new 𝑍 axis.

After a rotation, the coordinates of the transformed point
that relative to the original axes are determined via a matrix
multiplication with the rotation matrix 𝑅. The rotation
matrices is to interpret each of the 3 columns as the
coordinates of each of the coordinate axes after rotation. We
can interpret the entries of the rotation matrix for as the
formula when a coordinate frame rotates by matrix 𝑅 about
the origin.

Fig. 11 Frame transform process [9]

IV. RESULT

Fig. 12 Test environment

The test environment can be checked here. Our test
environment is a rectangular area around 13.3m1 . We put
eleven AprilTags in our test environment. Several obstacles
were placed and the tags were attached to the walls and
obstacles in different heights and orientations. The robot
started to move as soon as the explore_lite command was run.
The video of the robot implementing the frontier based
exploration can be checked here. Also, you can check what
Rviz was displaying during the frontier based exploration
here. The resulting occupancy grid map is shown in the figure
below.

Fig. 13 Resulting occupancy grid map of the test environment

The figure below shows the rqt_graph of the robot during
phase 1.

Fig. 14 RQT graph in phase 1

Once the map is created, the robot is supposed to create a
path along the wall and obstacles. However, migrating the
path planning algorithm to the ros framework is requiring
more work and studies, so for this demonstration, the robot
was controlled with the keyboard to simulate the algorithm
and verify that all the eleven tags could be detected with this
strategy. The demonstration of the wall/obstacle follower can
be checked here. Also, what Rviz was showing during the
operation can be checked here.

 The poses of all eleven tags are displayed on Rviz as
shown in the figure below:

Fig. 15 Rviz about tags information

In this figure, Tag IDs and poses displayed on the
occupancy grid map generated in phase 1 previously.

The exact coordinates of the tags are shown in the figure
below.

Fig. 16 Pose data of the tags part 1

Fig. 17 Pose data of the tags part 2

The figure below shows the rqt_graph of the robot during
phase 2.

Fig. 18 RQT graph in phase 2.

V. CONCLUSION
 A robust autonomous system for reconnaissance in a

simulated disaster environment has been developed. It is
confirmed that the robot is able to create an occupancy grid
map correctly and fast using Frontier-based exploration given
the resulting occupancy grid map generated by the robot in
phase 1. As for phase 2, the custom node to create the path for
tag detection and navigate the robot through the path isn’t
completed yet, but the general idea of following the walls and

obstacles was able to be demonstrated by controlling the robot
with keyboard operation assuming the resulting motion is the
same as that of the custom node. Obviously, the robot could
detect all of the tags as our strategy ensures 100% detection
rate with very accurate pose calculations based on the
resulting tag data.

REFERENCES
[1] https://arxiv.org/pdf/1806.03581.pdf
[2] http://wiki.ros.org/explore_lite
[3] http://wiki.ros.org/apriltag_ros

[4] https://emanual.robotis.com/docs/en/platform/turtlebot3/quick-
start/#pc-setup

[5] http://wiki.ros.org/move_base?action=AttachFile&do=get&target=ov
erview_tf.png

[6] http://wiki.ros.org/move_base
[7] https://arxiv.org/ftp/arxiv/papers/1806/1806.03581.pdf
[8] https://www.pudn.com/news/6228d09f9ddf223e1ad160a5.html
[9] http://motion.cs.illinois.edu/RoboticSystems/CoordinateTransformati

ons.html

