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Introduction

Training: Learning Depth Scaling Factors

Monocular Depth Estimation (MDE) is widely used in robotics, AR, and autonomous systems, yet
predicting accurate metric depth remains a challenge due to scale ambiguity, where absolute depth
information is lost in projection.

Limitations of Existing Methods:

* Relative depth only — Most models predict ordinal depth but fail to recover true metric scale.
= Sensor dependency — Methods using LiDAR /stereo improve accuracy but increase cost and
complexity.

* Fixed depth constraints — Some models assume a predefined maximum depth, limiting adaptability.
Proposed Approach: Adaptive Depth Scaling

* Dynamically corrects scale errors by predicting an image-specific depth scaling factor.

* Two-step solution:

= Generate a dataset of optimal scaling factors by minimizing scale-invariant errors.
= Train a lightweight CNN to infer depth scaling factors from input images.

Data Generation: Learning Optimal Scaling Factors

Addressing Scale Ambiguity:

 SOTA MDE models accurately predict relative depth but exhibit systematic scale errors.

= Analyzing their predictions vs. ground truth reveals that correcting scale improves metric
depth estimation.
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Figure 1. Comparison of ground truth depth (top row) and Depth Anything V2 predictions (bottom row). Observing scale
errors in these predictions motivated our scaling optimization approach.

= We generate image-specific depth scaling factors to refine these predictions.
Optimal Scaling Factor Computation:

= Given a predicted depth map, we determine the optimal scaling factor by minimizing scale-invariant
errors.

= We use the Wasserstein distance to align predicted and ground-truth depth distributions.

Optimization Objective:
s* = argmin W(s - Dyed, Dgt)
s€[0.1,2.0]

where W is the Wasserstein distance, Dyq is the predicted depth, and Dgt is the ground truth depth.
Building a Training Dataset:

= 392 images from NYU Depth V2 used to extract optimal scaling factors.
* Per-image scaling factors are log-transformed for numerical stability.

* The dataset is used to train a CNN for automatic depth scale correction.

Neural Network Architecture:

Lightweight CNN predicting log-transformed depth

scaling factor.
Training & Validation Loss (Log Scale)

Qualitative Evaluation: 3D Point Cloud Comparisons

Two convolutional layers (64, 128 channels) with RelLU
and MaxPooling.
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Flattened output passed through a 512-unit fully _
connected layer. 071

Final linear layer outputs a single scale factor per
Image.
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Training Process:

= Dataset: 392 images from NYU Depth V2, each with
RGB input and scale factor.
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= Loss Function: Mean Squared Error (MSE). I ; b 5 % 5 @

= Optimizer: Adam (Ir = 1073), step decay every 10
epochs.
= Training for 30 epochs, validating every 5 epochs.

= Batch size = 30.

Quantitative Evaluation: Depth Estimation Accuracy

Performance Metrics:

= AbsRel (Absolute Relative Error): Measures depth
estimation accuracy.

- RMSE (Root Mean Squared Error): Penalizes large
depth errors.

Table 1. Scaling Factor Estimation Performance.

Dataset ¥ MAE | RMSE |

Training Set 0.0439  0.0532
= 01 Accuracy: Measures percentage of correctly estimated Test Set 01172 0.1269

depths.

= Scaling Factor Estimation: Evaluates accuracy of
predicted depth scale factors.

Key Findings:

= Our adaptive scaling significantly improves depth estimation accuracy.

= Scaling factor prediction is reliable, with low MAE and RMSE values.

= Our method generalizes well across test scenes, reducing errors without manual tuning.

= Achieves performance close to oracle scaling, proving the effectiveness of learned depth

correction.
Table 2. Depth Estimation Performance on Training and Test Sets.
Method AbsRel | RMSE | 01 (%) 1
Training Set
DA2 w/o scaling 0.2219 0.9480 66.32
DA2 w/ Oracle Scale 0.0554 0.3083 93.87
DA2 w/ Adaptive Scale (ours) 0.0792 0.3632 96.07
Test Set
DA2 w/o scaling 0.3380 0.6166 32.06
DA2 w/ Oracle Scale 0.1084 0.2307 87.94
DA2 w/ Adaptive Scale (ours) 0.1914 0.3636 72.31
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Figure 2. Training and Validation Loss (Log Scale).

3D Point Cloud Reconstruction: We visualize 3D point clouds generated from estimated depth maps
to evaluate the effect of our adaptive scaling approach on monocular metric depth estimation. Below, we
compare ground truth depth, oracle-scaled predictions, our adaptive scaling predictions, and unscaled DA2
predictions.

(a) Oracle Scaling (Green) + Ground Truth PCD (b) Predicted Scaling (Blue) + Ground Truth PCD

(c) Unscaled DA2 (Red) + Ground Truth PCD

Figure 3. 3D Point Cloud Comparison: (a) Oracle-scaled DA2 prediction (green) aligns well with the ground truth, (b) our
adaptive scaling (blue) significantly improves scale alignment, and (c) unscaled DA2 predictions (red) exhibit severe scale
misalignment and distortions.

Conclusion and Future Work

Conclusion:

* Proposed a learned adaptive scaling approach to address scale ambiguity in monocular depth
estimation.

= Experiments show significant reduction in scale drift without the help of external sensors,
achieving near-oracle performance.

* Both quantitative and qualitative analyses confirm that adaptive scaling enhances depth
accuracy and geometric consistency:.

Future Work:

* Develop a mechanism to detect erroneous depth predictions before inference to improve
reliability.

» Extend the approach to pixel-wise adaptive scaling for handling depth discontinuities and complex
scene variations.




