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Abstract— Monocular metric depth estimation remains a
challenging problem due to scale ambiguity, which limits the
ability of models to produce accurate metric depth predictions
across diverse scenes, even though they excel at predicting
relative depth. While recent models have been fine-tuned
for improved metric depth estimation, they still experience
systematic scale inconsistencies across different datasets and
scenes. In this work, we introduce an adaptive depth scal-
ing framework that predicts an image-specific depth scaling
factor, improving metric depth estimation accuracy without
requiring scene-dependent manual tuning. We first generate
a dataset of optimal depth scaling factors by minimizing scale-
invariant errors between predicted and ground-truth depth
maps. A lightweight convolutional neural network (CNN) is
then trained to predict these scaling factors directly from input
images, allowing for dynamic correction of monocular depth
predictions. We evaluate our method on the NYU Depth V2
dataset, demonstrating that our approach outperforms base-
lines and enhances depth estimation accuracy across various
evaluation metrics. This work highlights the importance of
image-conditioned scale adaptation and contributes toward
more robust depth estimation for applications such as robotics,
augmented reality (AR), and scene understanding.

I. INTRODUCTION

Monocular depth estimation (MDE) is a fundamental task
in computer vision with applications in autonomous driv-
ing, robotics, and augmented reality (AR) [1], [2]. Despite
significant advancements in deep learning-based approaches,
accurately predicting metric depth from a single image
remains challenging due to scale ambiguity, which arises
from the loss of absolute scale information during perspec-
tive projection [3], [4]. This ambiguity hinders real-world
applications that require precise spatial measurements, such
as robot navigation and scene reconstruction [5].

Traditional MDE models often focus on relative depth
estimation, learning ordinal relationships between objects
in a scene without predicting absolute distances [6]. While
such approaches achieve high accuracy in ranking depth
relationships, they fail to generalize across diverse environ-
ments where depth scale varies significantly. Some methods
attempt to resolve this by incorporating auxiliary sensors
such as LiDAR [7] or stereo images [8], but these solutions
increase hardware complexity and cost. Others leverage
self-supervised learning with geometric constraints [9] or
predefine a fixed maximum depth assumption to constrain
predictions [10], yet these approaches fail to generalize
across different datasets and scenes.
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Recent studies have attempted to bridge the gap between
relative and metric depth by introducing learned scaling
factors [10], scene-dependent depth priors [11], and velocity
guidance for dynamic scale estimation [12]. However, many
of these approaches still struggle with scalability and adapt-
ability when deployed across varying environments.

To address these limitations, we propose a learned adaptive
depth scaling framework that dynamically predicts an image-
specific depth scaling factor, improving the accuracy of
monocular metric depth estimation without requiring addi-
tional sensors or manual tuning. Our approach consists of
two key steps:

• Generating a dataset of optimal depth scaling fac-
tors by minimizing scale-invariant errors between
predicted and ground-truth depth maps from the NYU
Depth V2 dataset [13].

• Training a lightweight convolutional neural network
(CNN) to infer depth scaling factors directly from input
images, allowing for dynamic correction of MDE
outputs.

We evaluate our method against state-of-the-art (SOTA)
monocular depth estimation models, demonstrating signif-
icant improvements across multiple evaluation metrics, in-
cluding absolute relative error (AbsRel), root mean
squared error (RMSE), and δ1 accuracy. By learning
an image-conditioned scaling factor, our approach en-
hances the reliability of monocular metric depth estima-
tion (MDE) in scale-sensitive applications such as robotics,
augmented reality (AR), and scene understanding.

II. RELATED WORK

Existing MDE methods can be primarily categorized based
on their strategies to address scale ambiguity:

Supervised Depth Regression. Early seminal works by
Eigen et al. [3] pioneered direct metric depth prediction
from RGB images using multi-scale convolutional neural
networks (CNNs). Subsequent approaches, such as those by
Fu et al. [14], leveraged ordinal regression for improved
depth accuracy but still faced scale ambiguity, resulting in
inconsistencies across datasets and scenes.

Self-Supervised and Geometric Constraints. To circum-
vent the dependency on extensive labeled datasets, self-
supervised methods have exploited geometric constraints,
for instance, photometric consistency and multi-view recon-
struction losses [5], [11]. Although self-supervision avoids
explicit reliance on ground truth depth data, it struggles with
scale generalization, typically necessitating manual scale
calibration per dataset or environment [11].



Fig. 1: Depth distributions, RGB images, and corresponding depth maps from Ground Truth and Depth Anything V2
predictions.

Relative Depth Approaches with Post-hoc Scaling.
Models like MiDaS [6], ZoeDepth [2], and Depth Anything
V2 [10] initially predict relative depth, achieving high ac-
curacy in determining ordinal relationships between pixels
without absolute distance. To obtain metric depth, these ap-
proaches require dataset-specific scaling, typically achieved
through manual or heuristic tuning. This reliance on fixed
or manually set scale parameters significantly limits their
adaptability to unseen datasets or environments.

Depth Anything V2 [10] currently represents the state-of-
the-art in monocular depth estimation, achieving exceptional
performance in terms of both accuracy and inference speed.
Despite its strong performance in estimating relative depth,
its fine-tuned metric predictions often exhibit scale deviations
from ground truth.

Our work specifically addresses this limitation by learning
an adaptive, image-conditioned scaling factor to further en-
hance depth estimates into reliable metric predictions. This
approach directly targets the primary drawback identified in
existing literature—the difficulty in generalizing scale across
varying scenes and datasets—without requiring additional
sensors or complex pre-processing steps.

III. METHOD

We first examine Depth Anything V2 [10], a state-of-the-
art monocular depth estimation model, on the NYU Depth
V2 dataset to assess its capabilities and limitations in metric
depth estimation. As illustrated in Fig.1, the pretrained model
generates depth predictions whose distributions closely re-
semble the ground truth distributions, suggesting accurate
estimation of relative depths. However, despite this similarity
in relative depth, there remains a consistent linear scale
discrepancy between predicted and ground truth depths, indi-
cating scale ambiguity inherent to monocular depth estima-
tion. Thus, we hypothesized that identifying the appropriate
image-specific scaling factor could substantially refine the
metric depth estimates.

To accurately determine the optimal scaling factors, we
devised an optimization-based approach grounded in aligning
depth distributions. Given an input RGB image and its

corresponding predicted depth map from Depth Anything
V2, our goal is to find a scaling factor that minimizes
the discrepancy between the predicted and ground truth
depth distributions. To quantify this distributional difference,
we employ the Wasserstein distance, also known as Earth
Mover’s Distance (EMD). Intuitively, Wasserstein distance
measures the minimum amount of effort required to trans-
form one probability distribution into another, where effort
is quantified as the amount of ”earth” moved multiplied by
the distance moved [15], [16].

Formally, we determine the optimal scaling factor through
a bounded optimization problem:

s∗ = argmin
s∈[0.1,2.0]

W (s ·Dpred ,Dgt), (1)

where W is the Wasserstein distance between the scaled
predicted depth values (s ·Dpred) and the ground truth depth
values (Dgt ). This optimization problem is solved numeri-
cally using a bounded optimization solver, initialized at s =
1.0 and constrained within a predefined range for numerical
stability and generalization. By solving this optimization
problem individually per image, we generate accurate per-
image scaling factors, thus enabling effective metric depth
refinement.

Ultimately, our goal is to automate the estimation of
optimal scaling factors directly from input RGB images. To
systematically achieve this, we generate a supervised dataset
by applying our optimization-based approach (Algorithm 1)
to compute optimal scaling factors for a subset of 392 RGB-
depth pairs from the NYU Depth V2 dataset [13]. Each
scaling factor minimizes the Wasserstein distance between
the scaled predicted depths and ground truth depths. The
resulting dataset, comprising RGB images paired with their
log-transformed optimal scaling factors, serves as training
data for our neural network.

Using this generated dataset, we train a lightweight convo-
lutional neural network (CNN) to predict the optimal scaling
factor directly from an input RGB image (Algorithm 2).
Notably, we found empirically that predicting the logarithm



Algorithm 1 Generating Dataset of Optimal Scaling Factors

1: Input: RGB images {Xi}N
i=1, ground truth depths

{Dgt,i}N
i=1, predicted depths {Dpred,i}N

i=1
2: for each RGB-depth pair (Xi,Dgt,i,Dpred,i) do
3: Extract valid depth values: Dvalid

gt,i , Dvalid
pred,i

4: Solve for optimal scaling factor:

s∗i = arg min
s∈[0.1,2.0]

W (s ·Dvalid
pred,i,D

valid
gt,i )

5: Store the pair (Xi, log(s∗i )) in the dataset
6: end for
7: Dynamic Filtering (optional): Remove scaling factors

outside 5th-95th percentile
8: Output: Dataset D = {(Xi, log(s∗i ))}N′

i=1

of the scaling factor stabilizes training by reducing the
dynamic range and mitigating potential numerical instability
caused by large variance in scale factors.

Specifically, the CNN architecture consists of sequential
convolutional layers followed by fully connected layers, de-
signed explicitly to capture global and local spatial structures.
We hypothesize that the CNN implicitly leverages visual fea-
tures and spatial contexts—such as edges, contours, textures,
and semantic cues—in order to estimate the appropriate
scaling factor without explicit geometric priors.

The CNN is trained to minimize the Mean Squared Error
(MSE) loss between the predicted and ground-truth log-scale
factors:

LMSE =
1
N

N

∑
i=1

(yi − ŷi)
2, (2)

where yi denotes the ground-truth log-scale factor for the
i-th image, and ŷi is the predicted log-scale factor. Training
uses the Adam optimizer with an initial learning rate of 10−3,
gradient clipping for stability, and a step-based learning rate
scheduler that reduces the learning rate by half every 10
epochs.

Validation is performed periodically every five epochs to
monitor the model’s generalization capability and to mitigate
potential overfitting over a held-out validation subset com-
prising 20% of the total dataset. The average validation loss
is calculated using the same mean squared error (MSE) loss
as during training.

Upon inference, the predicted log-scale is exponentiated
to recover the actual scaling factor used for rescaling metric
depth predictions from the pretrained Depth Anything V2
model.

IV. EXPERIMENTAL RESULTS

We evaluate our learned adaptive scaling method by
comparing its performance against baseline predictions from
Depth Anything V2 (DA2) without a scaling factor, as
well as predictions refined using the ground-truth optimal
scaling factors computed via our optimization approach.
Our analysis includes both quantitative and qualitative re-
sults, assessing the accuracy of scaling factor predictions

Algorithm 2 Training CNN for Predicting Optimal Scaling
Factors

1: Input: Training dataset D = {(Xi, log(s∗i ))}N
i=1, learning

rate η , epochs T
2: Initialize CNN model parameters θ , optimizer, learning

rate scheduler
3: for epoch = 1 to T do
4: for each batch B ⊆ D do
5: Predict log-scale factors: ŷ =CNN(XB;θ)
6: Compute MSE Loss: L = 1

|B| ∑ j∈B(ŷ j −
log(s∗j))

2

7: Backpropagate gradients and update parameters
θ

8: end for
9: Perform validation every 5 epochs, record validation

loss
10: Update learning rate scheduler
11: Save model checkpoint periodically
12: end for
13: Output: CNN parameters θ ∗

and their impact on metric depth estimation performance.
Specifically, we present: (1) training and validation loss
curves to demonstrate model convergence; (2) evaluation of
scaling factor predictions on training and test datasets; (3)
comparative analyses of depth estimation accuracy (AbsRel,
RMSE, δ1) across methods; and (4) qualitative point-cloud
visualizations illustrating improvements in depth estimation
accuracy achieved through our adaptive scaling approach.

A. Training and Validation Loss

We first analyze our training and validation process by
examining the training and validation loss curves (Fig. 2)
where the losses are on a logarithmic scale for clarity. We
observe a rapid initial decrease in both training and validation
losses, indicating effective model learning during early train-
ing stages. Subsequently, the losses stabilize and gradually
converge, suggesting the model reaches a stable optimum.
Notably, the validation loss closely tracks the training loss,
occasionally being slightly lower due to stochastic variations
in data distribution during training, which suggests strong
generalization capability without significant overfitting.

B. Quantitative Evaluation

To quantitatively assess the scaling factor estimation, we
evaluate the trained model’s performance in predicting scal-
ing factors. Table I presents the results on both the training
and unseen test datasets. The mean absolute error (MAE)
and root mean squared error (RMSE) are reported as primary
evaluation metrics to measure prediction accuracy.

TABLE I: Scaling Factor Estimation Performance

Dataset MAE RMSE
Training Set 0.0439 0.0532
Test Set 0.1172 0.1269



Fig. 2: Training and Validation Loss Curves

These results confirm that our lightweight CNN effectively
learns to predict scaling factors, achieving low error rates on
the training set while maintaining reasonable generalization
to unseen test data. Although the test set errors are higher,
this is expected due to variations in scene content and
distribution shifts. The relatively low RMSE values suggest
that the model captures the underlying relationship between
image features and scale factors, supporting its potential for
real-world applications in adaptive depth estimation.

Next, we evaluate our method’s effectiveness in enhancing
monocular metric depth estimation. Table II presents depth
estimation performance in terms of absolute relative error
(AbsRel), root mean squared error (RMSE), and accuracy
threshold metric (δ1), across three approaches: (1) DA2
without scaling, (2) DA2 with ground-truth optimal scaling
(oracle), and (3) DA2 with learned adaptive scaling (our
method). We report results separately for both the training
and test sets.

To formally define these metrics:
• Absolute Relative Error (AbsRel): Measures the av-

erage relative error between predicted and ground truth
depths, capturing the overall accuracy of depth estima-
tion.

AbsRel =
1
N

N

∑
i=1

|Dpred
i −Dgt

i |
Dgt

i
(3)

• Root Mean Squared Error (RMSE): Evaluates the
magnitude of depth estimation errors, penalizing larger
discrepancies more heavily.

RMSE =

√
1
N

N

∑
i=1

(Dpred
i −Dgt

i )
2 (4)

• Accuracy Threshold Metric (δ ): Measures the per-
centage of predicted depths within a threshold ratio of
the ground truth depths. We primarily report δ1, defined
as:

δ1 =
1
N

N

∑
i=1

1

(
max

(
Dpred

i

Dgt
i

,
Dgt

i

Dpred
i

)
< 1.25

)
(5)

where 1(·) is an indicator function that counts the
fraction of pixels satisfying the threshold.

A lower AbsRel and RMSE indicate better depth es-
timation accuracy, while a higher δ1 suggests improved
consistency between predicted and ground truth depths.

TABLE II: Depth Estimation Performance on Training and
Test Set

Method AbsRel RMSE δ1 (%)
Training Set

DA2 w/o scaling 0.2219 0.9480 66.82
DA2 w/ Oracle Scale 0.0554 0.3083 93.87
DA2 w/ Adaptive Scale (ours) 0.0792 0.3632 96.07

Test Set
DA2 w/o scaling 0.3380 0.6166 32.06
DA2 w/ Oracle Scale 0.1084 0.2307 87.94
DA2 w/ Adaptive Scale (ours) 0.1914 0.3636 72.31

These results demonstrate that our learned adaptive scaling
method substantially improves depth estimation accuracy
over the baseline without scaling. On the training set,
our approach achieves an AbsRel of 0.0792, which, while
slightly worse than the oracle scale, still represents a large
improvement over the baseline (0.2219). Similarly, on the
test set, our method generalizes reasonably well, lowering
AbsRel from 0.3380 (w/o scaling) to 0.1914. While the
performance gap between the oracle and adaptive scaling
increases in the test set, the significant improvement over
the baseline model validates our hypothesis that learning an
image-conditioned scaling factor enhances depth prediction
accuracy across diverse scenes.

C. Qualitative Evaluation

To better illustrate the impact of our learned adaptive
scaling, we visualize 3D point cloud reconstructions gen-
erated from different depth estimation strategies in Fig. 3.
Each visualization includes the same RGB-colored point
cloud derived from the ground truth depth map for reference,
overlaid with an additional point cloud from one of the depth
estimation methods:

• Left: The point cloud from DA2 predictions rescaled
using oracle scaling factors, colored in green.

• Middle: The point cloud from DA2 predictions rescaled
using our learned adaptive scaling, colored in blue.

• Right: The point cloud from DA2 baseline predictions
without any scaling adjustment, colored in red.

The qualitative comparison clearly demonstrates the effec-
tiveness of our learned adaptive scaling. The DA2 baseline
predictions (right, red) show noticeable depth distortions,
confirming that raw relative depth predictions alone fail
to recover accurate metric depth. In contrast, the learned
adaptive scaling (middle, blue) closely aligns with the oracle-
scaled reconstruction (left, green), reducing scale errors and
improving alignment with the ground truth depth structure.

These results reinforce our quantitative findings, showing
that learning an image-conditioned scaling factor signifi-
cantly improves metric depth recovery.



Oracle Scaling (Green) + Ground Truth
PCD

Predicted Scaling (Blue) + Ground
Truth PCD

Unscaled DA2 (Red) + Ground Truth
PCD

Fig. 3: Qualitative evaluation via point cloud visualization. All three images contain the ground truth depth-based point cloud
(RGB-colored). The left image overlays the oracle-scaled DA2 point cloud (green), the middle image overlays the learned
adaptive-scaled DA2 point cloud (blue), and the right image overlays the unscaled DA2 point cloud (red), highlighting the
significant misalignment of the baseline approach.

V. CONCLUSION

In this work, we explored the problem of monocular
metric depth estimation and proposed a learned adaptive
scaling approach to correct the scale ambiguity in relative
depth predictions. Our method predicts an image-conditioned
scaling factor, allowing models such as Depth Anything V2
(DA2) to produce accurate metric depth without requiring
ground truth supervision during inference. Through extensive
evaluations, we demonstrated that our learned scaling sig-
nificantly improves depth accuracy, achieving performance
close to the oracle-scaled baseline. In particular, our approach
effectively reduces scale drift, leading to more geometrically
consistent 3D reconstructions.

Our qualitative and quantitative analyses indicate that ap-
plying an appropriate scaling factor is crucial for recovering
metric depth. The DA2 baseline, which lacks scale correc-
tion, exhibited severe depth distortions, whereas our adaptive
scaling approach closely aligned with the ground truth. This
suggests that incorporating image-conditioned priors can
help bridge the gap between relative and absolute depth
estimation. We also observed that oracle scaling provided
only marginal improvements over our learned scaling, further
validating the effectiveness of our approach.

VI. FUTURE WORK

While our method has demonstrated strong performance
in monocular metric depth estimation, several directions
remain for future exploration. One key observation is that
some depth predictions do not merely suffer from a scale
misalignment but instead exhibit entirely incorrect depth dis-
tributions. A promising direction is to develop a mechanism
to estimate whether a given depth prediction is likely to
result in a completely erroneous distribution before running
inference. This could enable selective depth estimation or
post-processing, ensuring that only reliable depth maps are
used for downstream tasks.

Another important extension is to explore pixel-wise scal-
ing instead of applying a single global scaling factor per

image. Some regions within an image may require different
scaling adjustments due to varying scene properties, such
as depth discontinuities and occlusions. A pixel-adaptive
scaling model could further enhance accuracy, especially in
complex environments.

By addressing these challenges, we aim to develop a more
adaptive and reliable monocular depth estimation approach,
ensuring its applicability to real-world robotics, AR/VR, and
autonomous navigation systems.
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