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Fig. 1: Locomotion Beyond Feet enables whole-body humanoid locomotion on diverse and challenging terrains—including
low-clearance spaces under chairs, knee-high walls, knee-high platforms, and steep ascending and descending stairs—through
chaining nine distinct locomotion skills that actively engage body parts beyond the legs for stability and support.

Abstract— Most locomotion methods for humanoid robots
focus on leg-based gaits, yet natural bipeds frequently rely on
hands, knees, and elbows to establish additional contacts for
stability and support in complex environments. This paper in-
troduces Locomotion Beyond Feet, a comprehensive system for
whole-body humanoid locomotion across extremely challenging
terrains, including low-clearance spaces under chairs, knee-high
walls, knee-high platforms, and steep ascending and descending
stairs. Our approach addresses two key challenges: contact-rich
motion planning and generalization across diverse terrains. To
this end, we combine physics-grounded keyframe animation
with reinforcement learning. Keyframes encode human knowl-
edge of motor skills, are embodiment-specific, and can be read-
ily validated in simulation or on hardware, while reinforcement
learning transforms these references into robust, physically
accurate motions. We further employ a hierarchical framework
consisting of terrain-specific motion-tracking policies, failure
recovery mechanisms, and a vision-based skill planner. Real-
world experiments demonstrate that Locomotion Beyond Feet
achieves robust whole-body locomotion and generalizes across
obstacle sizes, obstacle instances, and terrain sequences.

I. INTRODUCTION

Most locomotion methods for humanoid robots focus
solely on leg-based movement [1], [2], [3], yet bipeds in
nature frequently leverage contacts from all limbs and torso
to stabilize and support their bodies in complex environ-
ments [4], [5]. For example, in environments such as low-
clearance spaces under chairs, knee-high platforms, knee-
high walls, and steep ascending and descending stairs, loco-
motion using only the feet becomes infeasible or necessitates
abrupt motions. Humans naturally leverage additional body
parts—such as hands, knees, and elbows—to establish extra
contact points, enabling them to crawl, climb, and employ
other whole-body strategies to overcome these obstacles.

We introduce a vision-based, hierarchical policy frame-
work to enable highly diverse whole-body humanoid lo-
comotion. Despite the benefits, whole-body locomotion re-

mains underexplored in humanoid robots due to two main
challenges: (1) Navigating complex environments requires
strategic contact planning and robust control. (2) Different
terrains require fundamentally different motor skills, such as
walking, climbing, or crawling.

To address the first challenge, a key insight is that
traditional keyframe animation and reinforcement learning
(RL) are highly complementary for learning terrain traversal
policies. Keyframe animation provides an intuitive approach
to encode human knowledge of motor skills and physical
interactions with the environment into robot control, such
as specifying critical contact states and joint configura-
tions [6]. Because natural human motion is typically low-
frequency [7], keyframes serve as an effective abstraction.

Similar to prior approaches that retarget human motion
capture (mocap) trajectories for motion tracking [8], [9],
[10], [11], [12], [13], traditional keyframe animation provides
kinematics but relies on RL trained in physics simulation to
become dynamically viable robot policies. Importantly, un-
like motion capture data, keyframes bypass the embodiment
gap entirely by directly designing reference motions in the
robot’s state space. This frees us from carefully matching hu-
man and robot embodiments, and instead allows exploration
of the robot’s full hardware capabilities, producing motions
not constrained by human demonstrations. Furthermore, the
physical plausibility of keyframes can be verified in sim-
ulation and validated in the real world through open-loop
execution, significantly accelerating the design iterations. In
practice, once familiar with the tools, designing a physically
consistent trajectory with keyframes typically requires only
a few hours, even for challenging locomotion skills such
as climbing over a wall, considerably more efficient than
combined efforts of motion capture, human motion data
retrargeting, and extensive reward shaping for RL training.

To address the second challenge that different terrain



requires different skills, we argue that a single vision-
based policy is not necessary and likely less desirable:
a hierarchical framework is more robust. Our hierarchical
framework allows diverse motion tracking policies tailored to
distinct terrains, robust failure recovery mechanisms for fall
situations, and a general vision-based planner that classifies
terrain with stereo fisheye cameras and learned depth estima-
tion. While rapid responses to local disturbances require fast
50 Hz control loops, locomotion mode selection with vision
input can robustly operate at a lower frequency (10 Hz).

As shown in Figure |, Locomotion Beyond Feet is a
comprehensive framework that enables traversal of extremely
challenging obstacle courses through three categories of mo-
tor skills: (1) locomotion skills such as walking and crawling,
(2) transition skills such as getting up from crawling, getting
down to crawling, getting up from prone, and getting up from
supine, and (3) terrain-specific skills such as climbing onto a
platform, rotating on a platform, climbing down from a plat-
form, climbing over a wall, climbing upstairs, and climbing
downstairs. Extensive real-world experiments demonstrate
the system’s robustness to obstacle sizes, obstacle instances,
and terrain sequences. All work will be open-sourced.

II. RELATED WORKS
A. Locomotion on Challenging Terrains

Biomechanical studies reveal clear distinctions between
quadrupedal and bipedal locomotion modes: macaques walk-
ing bipedally adopt a wider step width, longer duty cycle,
and extended double-support phase to compensate for upright
posture and a shifted center of mass [14]. The key distinction
lies in the size of the support polygon, defined as the convex
hull of ground contact patches. Static balance is possible only
when the center of mass (CoM) remains within this polygon.
Leg-only locomotion yields a small support polygon that
reduces to a single contact patch during footstep transitions,
often necessitating abrupt motions on difficult terrain. In
contrast, whole-body locomotion can employ three or more
contact patches to form a larger and more consistent support
polygon, yielding more stable and safer movement.

On the robotics side, RL has enabled robust locomotion on
challenging terrains; for instance, Rudin et al. [15] demon-
strated massively parallel deep RL. However, the same strat-
egy is applied to both quadrupedal and bipedal robots without
accounting for their distinct locomotion modes. Quadrupedal
robots excel at terrain traversal through coordinated leg
motion and have achieved agile parkour behaviors [16], [17],
[18], [19], [20], [21]. Recent humanoid approaches [1], [2]
largely adopt quadruped-inspired strategies, relying primarily
on leg-based locomotion with minimal arm involvement and
overlooking the distinct roles of arms and legs. By contrast,
our approach leverages whole-body motion, with all the body
parts actively contributing to stability during terrain traversal,
akin to natural human strategies in extreme environments.

B. Keyframe Motion in Robotics

Keyframes provide intuitive human control over motion
synthesis, originating from character animation [22], [23],

[24]. In robotics, keyframes have been adapted for humanoid
motion generation through optimization [25], as reference
trajectories for learning motion tracking policies [26], [27],
and as sparse rewards to achieve specific goals at predeter-
mined times [28]. In these works, keyframes offer an intuitive
mechanism for encoding human expertise and biomechanical
insights into robotic motion synthesis [6]. The effective-
ness of keyframe representation stems from the observa-
tion that natural human locomotion exhibits predominantly
low-frequency characteristics [7], making sparse temporal
sampling through keyframes a well-suited abstraction that
captures essential motion dynamics. Inspired by prior work,
we leverage keyframe motions as references for training
terrain-specific whole-body locomotion skills.

Unlike traditional keyframe animation, our approach
ensures physics-grounded motions through a MuJoCo-
integrated tool [29] that allows interactive visualization and
validation of dynamics and contacts. Keyframing further
distills human knowledge of dynamics into motion priors by
explicitly specifying contact transitions and support phases.
In contrast, recent kinematic retargeting methods [8], [9],
[10], [11], [12], [13] lack dynamics information [30] and
suffer from embodiment gaps. Moreover, while retargeting
pipelines make RL training and sim-to-real transfer difficult
to verify, keyframes can be validated directly in simulation
or via open-loop execution on the real robot, enabling faster
iteration and clearer optimization.

C. Perception for Legged Locomotion.

Legged locomotion has employed diverse perception
modalities, using lidar point clouds for geometric under-
standing [21], [31] and depth sensing for terrain percep-
tion [2], [18], [20]. Our approach adopts depth-based per-
ception for its accessibility and computational efficiency.
Notably, advances in learned stereo models such as Founda-
tion Stereo [32] enable depth estimation directly from RGB
inputs, even eliminating the need for depth sensors.

D. Policy Chaining

Policy chaining is typically achieved by treating motor
controllers as modular skills and composing them through
a high-level planner that determines when each controller is
activated. The main challenge lies in the mismatch between
the terminal state distribution of one policy and the start
state distribution of the next. Prior methods address this
either by carefully engineering compatible start and terminal
states [33] or by leveraging deep learning frameworks to train
composite behaviors with a meta-composer policy [34], [35],
[36]. In our work, we found that a carefully designed state
machine, in which all policies are trained to start and end in
one of four canonical poses—standing, crawling, lying prone,
or lying supine—was sufficient to ensure smooth transitions
between skills during execution.

III. METHOD

Locomotion Beyond Feet enables whole-body locomotion
through four key components: physics-grounded keyframe
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Fig. 2: System Pipeline. First, we generate physics-grounded keyframe motions with a physics-aware GUI application, where
robot poses and arrival times are specified interactively. Second, we interpolate the keyframes to create reference motions,
which serve as tracking rewards for RL policies. We further apply extensive domain randomization, such as initial robot
states, obstacle dimensions, and IMU noise. Finally, a skill planner processes depth input from a learned depth estimation
module at 10 Hz, along with IMU readings and the current skill, to select the next appropriate skill.

motion generation, DeepMimic-based motion tracking poli-
cies, a depth-conditioned visual skill classifier, and a hierar-
chical skill execution framework (Figure 2).

A. Physics-Grounded Keyframe Motion

We generate reference motions using a GUI tool based
on MuJoCo [29] that allows intuitive design of physically
plausible motions. In the app, the user specifies robot poses
along with their execution order and arrival times. The
resulting keyframe sequence is then linearly interpolated to
generate a complete trajectory. Although specifying arrival
times may seem difficult, we found that simple choices such
as 0.5 seconds, 1 second, or 2 seconds are usually sufficient.

Keyframe motion is most criticized for the need for
manual tuning [37]. To mitigate this, we streamline keyframe
design with utilities for joint mirroring, aligning the robot’s
feet to the ground, and visualization of the center of mass,
collisions, and contacts. Our tool enables quick validation
of individual keyframes and full trajectories for balance and
smoothness. In practice, for simple motions such as crawl-
ing, we design the entire trajectory to be physically valid
and directly replayable in simulation. For more challenging
motions such as climbing over a wall, we instead ensure that
individual keyframes are statically stable, so that the linearly
interpolated trajectory remains physically plausible.

Another limitation of keyframe motion is its open-loop
nature—it cannot adapt to perturbations, modeling errors,
or unexpected environmental changes. While it provides a
strong prior, it lacks the reactive flexibility required for real-
world deployment. To address this, we train motion-tracking
policies with RL that robustly execute keyframe motions
while adapting to various uncertainties.

B. Motion Tracking Policies

We categorize motion tracking policies into three types:

Locomotion skills provide continuous control for peri-
odic locomotion skills that can be modulated by velocity
commands. We implement command-conditioned policies
for walking and crawling, ensuring reactive control based
on high-level navigation commands.

Transition skills handle transitions between different
poses, such as standing to crawling, crawling to standing,
lying prone to standing, and lying supine to standing. Each
policy is trained to execute the entire transition sequence
autonomously once initiated.

Terrain skills handle specific terrains, including climbing
onto a platform, rotating on a platform, climbing down from
a platform, climbing over a wall, climbing upstairs, and
climbing downstairs. Each policy autonomously executes the
entire trajectory once triggered.

We train all three types of skills following a similar recipe:
RL-based motion tracking policies 7(a;|s;) that output joint
position setpoints a; for proportional-derivative (PD) con-
trollers. The observable state s; includes:

S5t = (¢t7CtaAqtaQtaat—laohwt), (1)

where ¢, denotes the phase signal for temporal coordination.
The locomotion policies employ a periodic signal, whereas
the transition and terrain policies use a monotonically in-
creasing signal. ¢; represents optional velocity commands,
Ag; is the joint position offset from the neutral pose qg, G;
is the joint velocity, a;—; is the previous action, 6; is the
torso orientation, and wy is the torso angular velocity.

We train these policies using PPO [38] with reward



Algorithm 1 Skill Planner

Require: depth map D; torso pitch and bounds 6, 6,,;,,
Omax; depth extrema bounds dpin, Omax; confidence
threshold c; current skill S¢y,r; recovery skill Spec.

1: function SELECTSKILL(D, Scurr, 0)

fallen < (Opitch < Omin and max(D) < iy )
or (Opitch > Omax and min(D) > drax)

3 if fallen then

4 return S,..

5: end if

6: p < CLASSIFYSKILL(D)

7

8

9

»

p+<01-p+09-p
Sbest < argmax; ﬁ[j]
if D[Shest] > ¢ then

10: return Speg

11: else
12: return Sg,,,
13: end if

14: end function

functions following standard practices [26]:

imitation regularization survival
Ty =1} +1,® + el )

The imitation reward ri™@i" enforces accurate tracking
of reference motions generated from our keyframe interpo-
lation, with the exception of walking motions which use
a closed-form Zero Moment Point (ZMP) solution [39].
The regularization term 2" incorporates heuristics to
minimize joint torques, energy consumption, and action rate,
while the survival reward 15"~ prevents early termination.

The term rimi@tion jg defined as a weighted sum across
several tracking rewards. We follow similar formulation con-
ventions in DeepMimic [26]: the pose reward 1} encourages
alignment of body orientations with the reference motion, the
velocity reward rj matches local body velocities, the end-
effector reward 1§ tracks the positions of the hands and feet,
and the center-of-mass reward ry penalizes deviations of the

robot’s center of mass from the reference trajectory.
i
e = Wit + whrt + wity + wiry + wirf.  (3)
More specifically, r}* is the motor position tracking reward:

rt = ZWQQXP (_||CI9_QSH2)7 4)
g

where g € {leg, arm, neck, waist}, ¢, is the actual motor
position, ¢ is the corresponding reference motor position,
and w, is the weight assigned to action group g. For
physically verified keyframe motion, we use the commanded
actions as the motor position reference to account for mo-
tor tracking errors. Thanks to physics-grounded keyframe
motions, RL training requires no additional rewards and
proceeds smoothly.

To enable seamless sim-to-real transfer, we employ exten-
sive domain randomization during training, including ground
friction, motor actuation parameters, initial robot states,

l‘ 12 cm f 5 16 1

Fig. 3: Test Obstacles. We show the robot beside test
obstacles, including (a) low-clearance spaces under chairs,
(b) knee-high platforms, (c) knee-high walls, and (d) steep
ascending and descending stairs. The space under the chairs
is shorter than the robot (53 cm), requiring crawling. The
wall is 48% of the robot’s leg length (25 cm), requiring
climbing. The platform height is 44% of the leg length, and
each stair height is 16% of the leg length, all posing extreme
challenges at the robot’s scale.

starting positions and orientations to different terrains, IMU
noise, and action delays. The IMU noise model combines
colored noise, white noise, random-walk bias, and random
amplitude scaling for both gyroscope and orientation signals,
mimicking realistic IMU outputs.

All our polices are trained to start and end in either a
standing pose, a crawling pose, a lying prone pose, or a lying
supine pose. This design choice facilitates smooth transitions
between different skills during execution.

C. Visual Skill Classifier

Our classifier enables autonomous skill selection by learn-
ing to classify appropriate skills from depth input.

Data Collection. Training data are first generated in simu-
lation by pairing depth maps with skill labels. Obstacles are
randomly positioned to create diverse terrains, and camera
poses are slightly randomized within each rollout to increase
diversity. Depth maps are primarily captured from head-
mounted cameras, ensuring natural viewpoints consistent
with real-world deployment. Locomotion skill data are col-
lected throughout execution, while transition and terrain skill
data are sampled only at the start of each skill. Ground-truth
labels are obtained from a distance-based heuristic planner
that triggers skills when obstacles fall within predefined
thresholds. To address the remaining sim-to-real gap, we
additionally collect a small amount of real-world data to



Fig. 4. Terrain Policies. We demonstrate our policies on traversing extremely challenging terrains—including (a) low-
clearance spaces under chairs, (b) knee-high walls, (c) knee-high platforms, and (d) steep ascending and descending
stairs—and additionally show (e) fall recovery from supine and prone positions in case of failure.

finetune the classifier, ensuring alignment with depth from
real sensors.

Skill Classifier Training. We train a ResNet [40] classifier
to select appropriate skills from depth input. To address
class imbalance, transition and terrain skills are weighted
proportionally, since locomotion data are more abundant.
Simulated depth maps are processed with downsampling,
cropping, clipping, noise, and blur to match the real camera.
Unlike RGB-D sensors, our learning-based stereo system
introduces distinct noise characteristics: although most depth
values remain temporally consistent in a static scene, we
observe both local and global flickering over time. We
replicate this phenomenon in the simulator with local and

global Gaussian noise and Gaussian blur at edges.

Real-world Deployment. We estimate depth with Foun-
dation Stereo [32] from rectified dual-fisheye RGB images.
Its disparity maps are converted to depth using rectification
parameters and the baseline. Compared to conventional depth
cameras, Foundation Stereo offers more accurate metric
estimation and a much wider field of view—97° x 76° in
our setup versus 87° x 5H8° for a RealSense D435.

D. Hierarchical Policy Execution

We introduce a hierarchical framework that separates
vision-based planning from proprioception-based control,
enabling modularity and robustness. The design employs a
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Fig. 5: Sim-to-real Depth Comparison. We set up the same
scene of YCB objects [41] (a) in MuJoCo [29] and (b) in
the real world. The real-world RGB images are rectified after
calibrating the fisheye cameras’ intrinsics and distortion, with
white dashed lines illustrating proper alignment. (c) On the
right is a comparison of ground-truth depth with real-world
estimates from Foundation Stereo [32] with resolution 480 x
640 and 96 x 128, respectively. We compute the quantitative
results in the cropped region marked by the black box.

low-frequency visual classifier (10 Hz), motivated by the
observation that locomotion mode switching occurs at low
frequency, coupled with a high-frequency low-level policy
(50 Hz) that enables rapid responses to local disturbances.
Separate from the vision-based planner, our framework also
detects falls from IMU readings and triggers the recovery
policies, further enhancing system robustness.

Our execution strategy is shown in Algorithm 1: dur-
ing testing, depth maps are continuously processed and
skills are predicted at 10 Hz. For smooth deployment, skill
predictions are temporally stabilized with an exponential
moving average. The system continues executing locomotion
skills (walking or crawling) until the smoothed confidence
surpasses a threshold, at which point it switches to the
corresponding transition or terrain policy. Some skills are
chained, such as rotating on a platform and climbing down
from a platform. During a transition, classifier outputs are
ignored; once it completes, the system resumes locomotion
control until the next confident transition is triggered.

1V. EXPERIMENTS
A. Setup

We use the open-source humanoid platform Toddler-
Bot [42] for these whole-body locomotion tasks. With a
compact form factor, 30 degrees of freedom, and human-
like range of motion, ToddlerBot is well-suited for testing
in complex environments consisting of diverse obstacles to
evaluate terrain traversal skills (Figure 3). These terrains are
constructed using common household items such as chairs,
foam blocks, and wooden planks, allowing for easy setup
and reconfiguration. Foam blocks and wooden planks are

modeled with simple geometric primitives, while the chair’s
geometry is captured using an image-to-mesh generator [43]
with hand-measured scales for accurate representation. We
conduct controlled experiments on individual components as
well as a holistic evaluation of the entire system.

B. Motion Tracking Policies

Figure 4 presents a selection of real-world photos, show-
casing the effectiveness of our motion-tracking policies with
zero-shot sim-to-real transfer, including crawling under a
chair, climbing over a wall, climbing onto a platform, rotat-
ing on a platform, climbing down from a platform, climbing
upstairs, climbing downstairs, getting up from supine, and
getting up from prone. The full experiment, including an
additional cart-exit skill acquired with only a few hours of
keyframe tuning, is shown in the supplementary video.

C. Depth Estimation

To improve the inference speed, we downsample the RGB
resolution from 480 x 640 to 96 x 128 and compile the
model using TensorRT with float16 precision, achieving 10x
speedup from 1 Hz to 10 Hz on a Jetson Orin NX 16GB.

To demonstrate the effectiveness of depth estimation with
Foundation Stereo [32], we present a qualitative comparison
in Figure 5. Note that while many details are lost in the 96 x
128 version, they are unnecessary for terrain perception, as
the obstacles are typically large structures. Quantitatively, our
evaluation reports a pixel-wise mean absolute error (MAE) of
55 mm within the black box region, as shown in Figure 5 and
a point cloud Chamfer Distance of 16 mm, which primarily
arises from misalignment between the simulation and the
real-world scene setup. Moreover, the accuracy at 96 x 128
is comparable to 480 x 640, with a pixel-wise MAE of 57 mm
within the black box region in Figure 5 and a point cloud
Chamfer Distance of 12 mm compared to the ground truth in
simulation. Empirically, the accuracy at 96 x 128 is sufficient
for the downstream visual skill classifier.

D. Visual Skill Classifier

We train primarily on 64,665 simulated depth map-skill
pairs, supplemented with 9,952 real-world pairs, each labeled
by obstacle distances using the same procedure as in simula-
tion. To evaluate robustness, we collect an additional 2,401
real-world depth maps as a held-out test set.

Figure 6 shows the confusion matrix on the real-world
test set, and Table I reports accuracy across different training
regimes. A classifier trained only in simulation suffers from
the sim-to-real gap, while one trained solely on real data
performs well but is costly to collect. Combining large-scale
simulation with limited real data yields the highest accuracy
with minimum data collection effort. Although the best
model still incurs a 3.3% error rate, this is further mitigated
by the downstream skill planner by temporal smoothing and
confidence-based skill selection (Algorithm 1).
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Fig. 6: Visual Skill Classifier Accuracy. We present a
confusion matrix of the skill classifier’s real-world accuracy
after training in simulation and fine-tuning with a small
amount of real-world data. The skills are marked with letters:
(a) getting down to crawling, (b) crawling under a chair,
(c) getting up from crawling, (d) climbing over a wall, (e)
climbing onto a platform, (f) climbing down from a platform,
(g) walking, (h) climbing upstairs.

TABLE I: We show the visual skill classifier’s accuracy on a
real-world test set when trained with different data sources.

Method Combined

96.7

Sim data only

51.2

Real data only
90.4

Accuracy (%)

E. System Robustness

We further evaluate the robustness of our policies by
running them on terrains of varying scales, focusing on
challenging skills, including climbing over a wall, climbing
onto a platform, and climbing down from a platform. As
shown in Figure 7 (a) and (b), the terrain skills demonstrate
strong robustness while relying solely on proprioceptive
input, without visual information. Although the reference
motions were designed for fixed terrain configurations (e.g.,
climbing over a 0.12 m wall, and climbing onto and down
from a 0.11 m platform), policies trained with domain
randomization on obstacle sizes generalize effectively to a
wider range of obstacle heights. In contrast, simply replaying
the keyframe animations and naive motion tracking policies
will immediately fail when terrain configurations differ.
Moreover, we evaluate our hierarchical framework on four
obstacle orders: (1) chair — wall — platform — stairs, (2)
stairs — platform — wall — chair, (3) wall — stairs —
chair — box, and (4) platform — two chairs — stairs —
wall (Figure 7). All of these are successfully solved in a
zero-shot manner (see the supplementary video).

V. CONCLUSION

In conclusion, we present controlled experiments on in-
dividual components alongside a holistic system evaluation,

Fig. 7: System Robustness. (a) The climbing over a wall
policy designed for a 12 cm wall generalizes to wall heights
from 9 cm to 14 cm. (b) Similarly, the climbing onto a
platform policy designed for a 11 cm platform generalizes
between 8.5 cm and 13 cm. (c) We demonstrate zero-
shot success of our method across four obstacle orders and
varying obstacle counts, such as two chairs in a row.

demonstrating that Locomotion Beyond Feet achieves stable
whole-body locomotion on challenging terrains—including
low-clearance spaces under chairs, knee-high platforms,
knee-high walls, steep ascending and descending stairs—by
actively engaging hands, knees, elbows, and other body parts
to increase terrain contact. Although evaluated on a miniature
humanoid, given the system robustness, we expect that our
framework transfers seamlessly to full-size humanoids.
While our system achieves robust whole-body locomotion,
several limitations remain. First, keyframe design requires
manual effort and domain expertise, though this enables
rapid iteration compared to human motion retargeting. Auto-
mated design through optimization could enhance scalability.
Second, linear interpolation between keyframes trades mo-
tion naturalness for simplicity—more sophisticated interpo-
lation methods could improve motion quality. Third, extreme
contact-rich strategies like climbing over a wall that succeed
in simulation occasionally fail on hardware due to contact
modeling approximations. These limitations highlight inter-
esting avenues for future research, while our current system
provides a practical solution for diverse terrain traversal.
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