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Abstract—Surface acoustic wave (SAW) resonators are a
cornerstone in 5G/6G radio-frequency (RF) front ends owing
to their compact form factor, strong electromechanical
coupling, and compatibility with massive wafer-level
manufacturability. Despite these advantages, conventional
design—test workflows remain heavily reliant on full-wave
multiphysics simulations, repeated tape-outs, and exhaustive
vector network analyzer (VNA) sweeps. Such processes incur
high cost, long iteration cycles, and limited scalability, while
spurious modes and parasitic effects are difficult to capture
accurately. To overcome these challenges, an Al-driven
design—test prediction framework is developed to accelerate
modeling, validation, and optimization of SAW resonators. A
comprehensive dataset comprising 14,883 industry-verified
devices, 10,000 simulated structures, and 283 fabricated

samples is utilized for training and evaluation. The
framework predicts basic metrics with coefficient
determination (R?>0.99. It further reconstructs full

admittance spectra directly from structural parameter inputs
using ensemble regressors, yielding mean-squared error (MSE)
on the order of 10~3 and enabling accurate identification of
spurious responses. Furthermore, a CNN-based sparse
recovery method reconstructs spectra with only 16 frequency
points, representing a 98% reduction from the original 1,024
points, while preserving R?>0.98. Beyond prediction, an Al-
assisted process design kit (PDK) supports generative design:
given target constraints, the system automatically synthesizes
previously unseen, spurious-free resonators whose predicted
spectra align with measurements, expanding the PDK with
validated designs. Together, these capabilities bridge design
and fabrication, substantially reduce simulation and
measurement burden, and provide a scalable path toward Al-
driven design automation of MEMS acoustic devices for next-
generation RF applications.

Index Terms—Surface acoustic wave (SAW) resonators; MEMS;
artificial intelligence (AI); Convolutional Neural Network (CNN);
spectrum reconstruction; spurious mode analysis; sparse
recovery; process design kit (PDK).
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I. INTRODUCTION

HE rapid evolution of wireless communication

standards toward 5G and 6G has placed unprecedented

demands on radio-frequency (RF) front-end
components. Surface acoustic wave (SAW) devices remain
indispensable in this context due to their compact form factor,
inherently low insertion loss, and compatibility with large-
scale manufacturing [1]. To support higher frequency bands,
wider bandwidths, and stricter linearity requirements,
significant efforts have been made to engineer both substrate
materials [2], [3], [4], [S] and device architectures [6], [7], [8]
are being explored. Among these advances, the 42° Y-cut, X-
propagating lithium tantalate (42° YX LT) substrate has
gained prominence as a cornerstone technology. It provides a
favorable balance of electromechanical coupling, temperature
stability, and achievable quality factor (Q), positioning it as a
leading candidate for next-generation RF filters [9], [10].
Recent developments such as piezoelectric-on-insulator (POI)
and incredible high-performance (IHP) SAW structures [11],
[12] have further extended the utility of 42° YX LT, enabling
improved energy confinement, enhanced Q values, and wider
design flexibility.

Despite these advantages, the design and optimization of
such MEMS-based acoustic resonators, particularly for wafer-
level fabrication processes, still face several practical
bottlenecks. Like other vibrating MEMS devices, targeted
SAW resonators are also highly sensitive to process variations
across foundries, leading to deviations in key performance
metrics such as spurious modes, electromechanical coupling
(k2), and Q [13], [14]. The conventional development cycle
remains heavily reliant on iterative full-wave electromagnetic
(EM)-acoustic simulations, followed by multiple tape-outs
and measurement steps for model verification and tuning. This
workflow is inherently time-consuming and labor-intensive
[15], [16], particularly when extended to wafer-level yield
prediction or large-scale design space exploration.
Furthermore, spurious responses [17] and subtle parasitic
effects [18], [19] are often difficult to capture accurately in
physics-based compact models, adding to the reliance on
empirical correction after fabrication. These constraints slow
down innovation and limit the scalability of acoustic resonator
design for mass production, at a time when the market is
rapidly expanding with application-specific requirements for
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TABLE I
STATE OF THE ART OF THE AI-BASED MICROELECTRONICS AND MICROSYSTEMS

Akinwande et

Zhang et al.

Comparison Yan etal. [20]  Liu et al. [21] al. [22] Sui et al. [23] 24] Zuo et al. [25] This Work
Multi-targeted objective No Yes Yes No Yes Yes Yes
Optimization methodology Single target Multi targets Multi targets Multi targets Multi targets Multi targets Multi targets
Database utilization No Yes Yes Yes Yes Yes Yes
Automatic design No Yes Yes Yes Yes Yes Yes
Simulations independence No No Low High High High High
Measurement efficiency No No No No Partial No Yes
Scalability Costly No No No No No Yes
Experimental validation Yes No No Yes Yes Yes Yes

diverse 5G/6G bands [26].

Recent advances in artificial intelligence (AI) offer a
compelling opportunity to address the long-standing
limitations in microelectronics and microsystems design. Al
techniques have already demonstrated substantial impact in
electronic design automation (EDA) [27], circuit modeling
[28], and process variation prediction [29]. Table I provides a
state-of-the-art comparison of representative approaches,
including spanning traditional fabrication-driven methods [20],
machine-learning-assisted design frameworks shown in [21],
[23], transfer learning for EM modeling [22], device-level
optimization in acoustic resonators [24], and multi-target
inverse design algorithms [25]. As highlighted in Table I,
earlier works are often limited to single-target optimization or
rely heavily on large-scale simulations, with scalability and
experimental validation remaining significant challenges. In
contrast, the proposed work achieves a multi-targeted
objective, covering both performance metrics and full-
spectrum reconstruction, while demonstrating simulation-
efficient modeling, sparse measurement recovery, and wafer-
level scalability with experimental validation. This positions
this work as a unified Al-driven pipeline that bridges design
automation, simulation reduction, fabrication-oriented, and
large-scale measurement validation.

In this study, an Al-driven design—test framework for SAW
resonators is investigated. Specifically, physics-informed
regressors are developed to predict key scalar metrics and to
reconstruct the full admittance spectrum; a CNN-based sparse-
spectrum recovery enables fast wafer-level testing; spurious-

mode quantification guides suppression strategies; and an Al-
assisted PDK supports both forward prediction and generative
inverse design of new, spurious-free structures. Section II
details the modeling pipeline and the multi-physics equations
used for interpretability. Section III reports modeling and
measurement results on a mixed dataset. Lastly, a brief
conclusion is provided in Section IV.

II. ACOUSTIC RESONATOR DESIGN METHODOLOGY

The traditional process flows for MEMS acoustic resonator
production, especially mass production, require these devices
to be manually designed, iteratively simulated, and fabricated
round by round, with final fine frequency-domain
measurements. While this approach ensures accuracy, it
inevitably incurs heavy reliance on full-wave simulations and
multiple tape-outs, leading to time-consuming iterations, high
costs, and limited scalability at the wafer level. Such
bottlenecks restrict rapid exploration of the design space and
hinder efficient performance optimization.

Recent progress in artificial intelligence provides an
alternative path that AI models can serve as accelerators
within the resonator design loop shown in Fig. 1. Integrating a
modeling engine into the feedback cycle allows structural
parameters and sparse sampling data to be directly mapped to
key device metrics and even the full admittance spectrum.
This enables prediction without exhaustive simulations,
recovery of dense responses from limited measurements, and
compensation across wafers. In this way, the loop evolves
from a resource-intensive cycle into an Al-augmented
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Fig. 1. Al-accelerated design-test-tape out loop for performance and cost optimization.
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Fig. 2. Comparison of (a) traditional and (b) Al-driven design-test flows
for SAW resonators.

framework capable of fast, low-cost, and scalable optimization.

To simplify, Fig. 2 compares the conventional design—test
loop with the Al-driven alternative. In the traditional
workflow [Fig. 2(a)], repeated simulations, tape-outs, and full
measurements are required, resulting in high cost and limited
scalability. By contrast, the Al-assisted workflow [Fig. 2(b)]
relies on a parametric design library and sparse testing to
achieve faster validation and more efficient wafer-level
optimization.

A. Normal SAW Resonators’ Design—Test Framework

Traditionally, the design—test workflow is initiated by
specifying a target operating frequency for the intended
devices, such as the desired filters [30], oscillators [31],
duplexers [32], wireless tags or sensors [33], which relies on
the relation between elastic wave propagation in solids and the
geometrical periodicity of the interdigital transducer (IDT)
structure. For a deformable solid, the local form of Newton’s
second law reads:

dv; F+ doyj
Prar =P T Gy M

where p is the density, v; the particle velocity, and o;; the
stress tensor. Assuming small deformations, the linear stress—
strain relation generalizes Hooke’s law:

Oij = Cijki €k )
1 <6uk N aul>
= 2 axl axk (3)

where u is the displacement vector and c;jy; the stiffness
tensor. For an isotropic medium, Eq. (1) reduces to the wave
equation:

2
u
pﬁ=(l+2,u)v(v~u)—yv><(v><u) 4)
where A and 1 are the Lamé constants. This admits two bulk
wave solutions with distinct velocities:

A+ Zu f )

Considering a plane sinusoidal wave of the form u(x,t) =

uye/(@t=k%) the dispersion relation is obtained:
K = 2m _ W
=50 w= 2nf, vph = T (6)
In the case of Rayleigh waves propagating on the free
surface of a semi-infinite isotropic solid, the velocity Vy is
given by the secular equation involving V; and V; [34]:

v2\* V; I
(-7) 4](“%)(17:) ?

Since Vg depends only on the material properties (A, i, p)
and not on frequency, the operating frequency of a SAW
device is explicitly determined by the IDT pitch:

Ve Vg
A~ 2 x Pitch ®)

where A corresponds to the acoustic wavelength set by the
electrode periodicity, and Pitch is the sum of electrode width
and gap. For 42° YX LT, Vj should reach around 4211 m/s
[14]. Then, the coupling coefficient is tuned via electrode duty
cycle and normalized thickness hg,;, /A [3], where hg,; means
the thickness of substrate, which is labeled in Fig. 3. The
electromechanical coupling coefficient (k?) quantifies how
efficiently electrical energy is converted into acoustic wave
energy in piezoelectric media and SAW devices. For a linear
piezoelectric solid under small strains, the coupled equations
are:

fo=

T=cES—e"™,D=eS+&E 9)

where T, S are stress and strain, E, D are electric field and
displacement, cf is the elastic stiffness at constant field, €5 is
the permittivity at constant strain, and e is the piezoelectric
matrix. The time-averaged energy density of a harmonic wave
is:

(10)

For a given vibration mode M, the dimensionless coupling
coefficient K measures the fraction of total energy that can
be exchanged between electrical and mechanical domains. A
convenient form compares the phase velocities under open-
and short-circuited electrical boundary conditions:

1
W= > (ST + E™D)

2 2
K2 = Vopen ~ Vshort ~ 2 Vopen — Vshort
= ~ - (11)

2
Vopen open

This expression highlights that the velocity reduction
induced by short-circuit boundary conditions is a direct
measure of electromechanical coupling strength. In one-
dimensional approximations (thickness or oriented single axis),
Eq. (11) reduces to the commonly cited material form:

/ 12
€ii Cf} (12)

K? =~
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Fig. 3. Illustration of SAW resonator and zoomed in IDT layout.

with e;;, €, cﬁ' being the relevant material constants. This
provides a material-level indicator of the intrinsic coupling
strength. In practical SAW resonators, electrode mass loading,
electrical loading, and acoustic radiation modify the
observable resonance behavior. The effective coupling
coefficient k? is therefore defined from the measurable
resonance (f;) and anti-resonance (f,) frequencies [35]:

2 T / r fs
= (— X — — X —
k= GGy (13)
For practical calculations, the kZ can be approximated as:
1.[2 fZ _ f2
2 . IP S
kx5 (14)

Consider a one-port resonator characterized by input
admittance Y;,(f) = G(f) +jB(f) (or reflection S;;(f))
referenced to Z, = 50 Q). The quality factor of a resonator is
defined as the ratio between the resonance frequency and the
corresponding 3-dB bandwidth. At the series resonance f;, this
yields the series quality factor Q; = f;/A, while at the parallel
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TABLE 11
STRUCTURAL PARAMETERS IN SAW DEVICE DESIGN

Symbol Description Training
A [um] Aperture Included
Nipr Number of IDT electrodes Included
Nges Number of reflector fingers Excluded
W, [um] Electrode width Included
G [um] Electrode gap Included
Pitch [pm] Electrode pitch: W, + G Included
MR Metal ratio: W, / Pitch Included
hy [nm] Al thickness Included
hp; [nm] Ti thickness Included
hsyup [HM] Substrate thickness Included
Bw;pr [um] Busline width of IDT Excluded
Bwgey [um] Busline width of reflector Excluded
Bw;pr [um] Busline length of IDT Excluded
Bwpes [um] Busline length of reflector Excluded

resonance f,, the parallel quality factor is similarly given by
Qp = fp/Af,. Both quantities characterize the energy storage
relative to loss at the respective resonance and anti-resonance
frequencies.

For a loss-limited single-port described by reflection
coefficient T'(f) = S;1(f), the Bode Q is defined from the
frequency-sensitivity of the input impedance (equivalently, the
phase slope of I'):

w1y (f) IT()
1—=r(OI?
Using numerical differentiation with frequency in Hz, this
can be evaluated as

dargl
Jw

QBode(f) = , 0 = 21f, Tg(f) 2 - (15)

2nf [~ 15, ()l
1- |S11(f)|2

(16)

QBode ® =

This expression is exactly what we compute in code to obtain
a frequency-dependent Qpoqe.(f); the reported Qg is the
maximum within [ for fp].

The design of SAW resonators, fundamentally, considering
all the performance metrics mentioned above, begins with the
determination of key structural parameters, such as the
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Fig. 4. Al-based design—test pipeline for SAW resonators.
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Fig. 5. Workflow of performance metric prediction using regression models.

electrode pitch and the LiTaO; substrate thickness. Once these
are specified, the conventional workflow relies on iteratively
tuning a broad set of structural variables, as illustrated in Fig.
3 and summarized in Table II, using multiphysics simulations
to achieve the desired performance.

However, these parameter variations not only affect the
acoustic properties of the target resonance mode but also
introduce undesired spurious responses, originating from other
acoustic modes or even EM coupling. This makes the
optimization process highly dependent on fine parameter
adjustments and repeated simulations, creating substantial
design overhead. Even if an apparently optimal configuration
is identified through simulation, process-induced variations
during fabrication pose another critical challenge. Systematic
deviations in dimensions or film thickness, unavoidable in
fixed manufacturing processes, can shift the device away from
its intended operating point. As a result, the fabricated
resonator may fail to deliver the simulated optimum, forcing
repeated cycles of redesign and re-optimization in order to
meet performance specifications. Meanwhile, at the wafer
level, production testing introduces further inefficiencies.
Accurate characterization requires wideband frequency
sweeps with fine resolution to capture resonance and spurious
behavior. Since each frequency point measured by the vector
network analyzer (VNA) incurs non-negligible computation
time, scaling this procedure to hundreds or thousands of
devices on a single wafer results in prohibitive measurement
cost and time.

B. Multi-Stage Al Modeling Pipeline
The proposed Al-based framework replaces simulation-
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Fig. 6. COMSOL simulation model of Al/Ti on a LiTaOs substrate.

TABLE II1
PREDICTIVE ACCURACY OF BASELINE MODELS

Evaluate model
; candidates
===P>| Same features [===P> X:x —

Model MSE R?
Ridge 0.0102 0.9899
Lasso 0.2896 0.6304
Elastic Net 0.0823 0.9195
Gradient Boosting 0.0049 0.9951
Random Forest 0.0034 0.9967
XGBoost 0.0028 0.9972
CatBoost 0.0031 0.9969

intensive and tape-out-dependent processes with a multi-stage
modeling pipeline, as illustrated in Fig. 4. The pipeline begins
with the prediction of scalar performance metrics, such as the
resonance frequency ( fs), anti-resonance frequency ( f, ),
electromechanical coupling coefficient (kZ), quality factors
(including Qg, @, and Bode Q), directly from basic structural
parameters (e.g., 4, N;pr, Pitch, MR, and so on). This serves
as an efficient substitute for multiphysics simulations when
only a quick preliminary check is needed during early-stage
design.

As illustrated in Fig. 5, the prediction of scalar performance
metrics is formulated as a supervised regression task. A
comprehensive training dataset is constructed from 10,000
simulated resonator responses generated through COMSOL
parameter sweeps, aligned with the discussions in Section A,
with the corresponding modeling settings shown in Fig.6.
Each device structure is encoded into a feature vector, while
the associated performance labels are extracted from
simulation or measurement. Using this dataset, multiple
regression models, including linear regressors, support vector
regression, and ensemble tree methods, are trained and
benchmarked on a held-out testing set.

Model performance is evaluated using two standard metrics:
the mean squared error (MSE) [36]:

n
1
MSE = — E(yi - )? (17)
i=1

which quantifies the average squared difference between
predicted values ¥, and ground truth values y;, where n is the
number of total samples.

Another is the coefficient of determination (R?):

2ier i — y.)?
Z?=1(yi - ¥)?

where ¥ is the mean value of the ground truth values. A R?
score close to 1 indicates high predictive accuracy; a score less
than 0 implies worse-than-mean performance.

As shown in Table III, ensemble tree-based methods such
as Random Forests and XGBoost achieved the lowest
prediction error and the highest R? values. This superior
accuracy can be attributed to their ability to capture complex
nonlinear relationships and feature interactions among
resonator structural parameters, which are not well modeled
by linear baselines.

To extend beyond

R* =1 - (18)

scalar performance metrics, the
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framework incorporates full-spectrum reconstruction. An
ExtraTrees regression model similar to the framework in Fig.
5 is employed to map structural parameters directly to the
complete admittance response, including the real, imaginary,
and magnitude components, which not only reproduces the
main resonance but also resolves fine spectrum features,
thereby enabling accurate virtual evaluation of device
behavior without the need for exhaustive frequency-domain
sweeps.

Given the critical role of parasitic resonances, spurious
mode quantification is incorporated as an additional stage. In
this step, vector fitting (VF) is applied to the admittance
response to extract poles and identify secondary peaks that
make significant contributions to spurious behavior. Based on
these features, a spurious score (Sc) is defined by combining
the number and strength of the extracted poles and peaks and
is integrated as a complementary performance metric:

N °
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{ Detected peaks
@ .59 LA and valleys
s ‘sl
@ v \ 20
2 -60
£-70 A 40
3 A [
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(a) High spurious score (b) Low spurious score

Fig. 7. Illustration of spurious score on resonator admittance Spectrum.
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Fig. 8. Modified CNN framework for reconstructing full-resolution spectrum
from sparse inputs.
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Fig. 9. Transition from simulation-only loop to sim-to-real transfer PDK

= poles + peaks + valleys — 2 (19)

Poles are extracted using the vector fitting (VF) algorithm,
while peaks and valleys are identified by manual definition.
This comparison, shown in Fig. 7, demonstrates that the
spurious score can quantitatively distinguish resonators with
different levels of spectral purity, enabling an objective
assessment of spurious behavior. In this way, information on
spurious responses, beyond the main resonances, can be
systematically incorporated into subsequent modeling and
optimization.

To further reduce modeling and data collection costs, the
workflow transitions from full-band regression to a sparse-
spectrum recovery strategy. While tree-based regressors can
predict fine-grained admittance curves, their model
complexity and data requirements scale rapidly with
increasing training size and spectrum resolution. To address
this, a small set of informative discrete points, such as
resonance and anti-resonance anchors, spurious peaks
identified through vector fitting, and slope-change knots, is
first extracted. A modified convolutional neural network
(CNN) shown in Fig. 8 is then trained to reconstruct the
complete admittance response from these sparse samples. The
method is applicable both in simulation, by reducing the
number of solver evaluations per structure, and in wafer-level
testing, by shortening the number of VNA sweep points per
device, thus delivering substantial efficiency gains without
sacrificing spectral accuracy.

Finally, the outputs of all modeling stages are consolidated
into an Al-assisted process design kit (PDK), just as shown in
Fig. 9. The PDK stores multiple candidate designs, allows
rapid comparison of performance curves, and supports layout-
level optimization across frequency bands and fabrication
conditions, enabling efficient reuse and fast iteration. Beyond
serving as a design library, the PDK also embeds a simulation-
to-real (Sim-to-Real) framework that leverages abundant
simulated samples to reduce reliance on costly measurements,
requiring only a small subset of experimental results for
accurate calibration. This combined capability lowers the
burden of wafer-level testing while enhancing the scalability
of the Al-assisted workflow for practical resonator design.

C. Detailed Models and Algorithms of Proposed Baseline

Just as mentioned in Section. B, the modeling pipeline
begins by parsing filenames or design files to extract structural
parameter vectors x € R (e.g., A, Nipr, Pitch, MR, etc.),
along with full admittance spectrum admittance Y(f) =
Yre (D), Yim(F), 1Y (F)lag] € R¥*E for either simulated or
measured samples. These are aligned and persisted as
{X,Y, split}, where Yg, and Y}, denote the real and imaginary
components, and |Y|4g represents the log-magnitude.

To predict scalar metrics, we train a family of regressors
F = {Ridge, Random Forest, XGBoost, CatBoost ...} to map:
[fs' fp' ktz' er Qp’ QBode]

fscalar: xem= (20)

Prediction accuracy is evaluated via mean squared error
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(MSE) and coefficient of determination (R?) shown in Eq. (17)

and Eq. (18).
The full admittance spectrum is reconstructed by training
two regressors:

gR'gl:x'_)Yl;e'Yl;lERL! (21)
with the reconstructed log-magnitude computed as:
|}7|dB=2010g10< /17%3+171§1+£> (22)

The total spectrum loss is defined as the following equation
to have a faster convergence:

Ly = 0.3 MSE(Yge, Yre) + 0.3 MSE(Yim, Vim)
. (23)
+0.4 MSE (1Y |, |71, ;)

Spurious behavior is quantified by first applying vector
fitting to Y(f) to extract poles PP, followed by detecting peak
and valley indices X and K, on the dB-magnitude curve.
The spurious score is defined as:

Se = |PI+ |Hp| + 17| = 2 (24)
which aligns with Eq. (19).

A saliency-based subsampling strategy is applied by
computing:

s(fi) = w [VIY[I(f)) + w2 [V2|Y][(f))  (@5)
to allocate the sparse sampling set J € {1, ..., L} with higher
density near f;, f;, and local extrema.

Sparse reconstruction is performed using a masked U-Net
with input tensor:

x = [Yde, Yil, |Y|3s, mask, freg-enc, f;/f,...-attn] 2
x € R(ﬁ:XL ( )

An interpolated prior ¥ is generated and attention-

modulated input is computed as:
X< x- (1 + Conv1D(X4n)) 27)

Deep CNNs such as AlexNet [37], VGG [38], and ResNet
[39] established the foundations of modern image recognition,
showing that deeper networks can be effectively trained and
scaled [40]. However, these architectures mainly target global
representation learning. For reconstruction tasks with sparse or
incomplete inputs, U-Net [41] provides a more suitable
encoder—decoder structure with skip connections, enabling
both global context extraction and local detail preservation.

The network, which is based on the modified U-Net
network, predicts the full spectrum ¥ € R, optimized under
the composite loss, which is explained clearly by the
following Algorithm 1.

After executing the entire modeling pipeline, including

Algorithm 1: Training of Masked U-Net for Spectrum
Reconstruction

Input: Input tensor € R®***, ground truth

y € R3*E epochs T, weight o

Output: Trained model fy : RO¥L — R3*L
1 Initialize model parameters 6 ;
2fort=1to T do
3 | foreach mini-batch (x,y) do
Interpolate: 3 +— Interp(Zgparse, Mask) ;
Attention boost: x < x - (1 + ConvlD(Zyn)) ;
Predict residual: Ay < fy(z) ;
Reconstruct: § < y + Ay ;
Preserve sparse:

¥+ ¥+ (1 — mask) + Zsparse - mask ;
9 Compute total loss:

6xL

®X N N n A

L= Oéﬁreim + (1 - a)%(‘cdb + ﬁpred + £cons)

Backpropagate and update ¢

10 return fy

scalar metric prediction, full-spectrum reconstruction, spurious
mode quantification, and sparse recovery, Overall, the
complete output of each design is organized into the PDK

entry:

x€ = {X' fscalar(x), ?(f)r Sc} (28)
enabling downstream selection and optimization, with optional
Sim-to-Real calibration for measured alignment.

III. RESULTS AND DISCUSSION

To validate the proposed Al-driven methodology, a set of
42° YX rotated lithium tantalate-based SAW resonators was
simulated and fabricated. As summarized in TableIl, the
resonator performance is influenced by a complex interplay of
structural parameters, among which a subset of 9 key variables
in TableIV is selected as the models’ input for training
(Including W, and G ). The dataset consists of 14,883 de-
embedded admittance spectra from industry-verified
structures, along with 10,000 simulated samples and 283
fabricated and measurement samples. The microscope image
of fabricated devices is shown in Fig. 10. All samples have
been screened to ensure physical validity and consistency

TABLE IV
SUBSET OF TUNABLE TYPICAL PARAMETERS FOR PRACTICAL AND
MODELING
Design Parameters Simulation Measurement Ver}ﬁed data
from industry*
A [um] 36-272 36-216
Nipr - 31-241 31-241
Pitch [um] 0.6-3.4 1.8-3.4 1.8-2.7
MR 0.35-0.7 0.4-0.7 0.4-0.65
hy; [nm] 70-450 220-450 350
hp; [nm] 5-40 40 40
Ry, [HmM] 100-350 200 200

* Accurate data verified by Spectron
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Fig. 10. Microscope image of one of fabricated devices.

across simulation domains.

A. Performance Metrics Prediction Accuracy

To achieve the full design-test workflow, the first modeling
stage aims to predict key performance parameters directly
from the structural input vector, as illustrated in Fig. 11.
Motivated by its superior fitting performance in simulations,
the XGBoost model was applied to industrial-grade data,
trained on 75% labeled 1D vectors of 14,883 industry-verified
samples, as shown in Table III. As reported in Fig. 12, the
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Fig. 11. Prediction of discretized resonator parameters from structural input.
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Fig. 12. Regression performance of XGBoost model on resonator parameters.
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Fig. 14. Features matching in passband and spurious mode artifacts, while
recovering the Bode Q profile with correct peak position and magnitude.

proposed regression model achieves nearly perfect agreement
with the ground truth. Both the resonance and anti-resonance
frequencies are predicted with R? = 1.0000 and negligible
mean squared error, demonstrating the capability to precisely
capture frequency behavior. Similarly, the electromechanical
coupling factor (k7) and quality factors (Qs, Q,) are
reproduced with R? > 0.99, while the Bode quality factor
maintains high accuracy with R? = 0.9965. These results
confirm that the regression model can reliably extract both
frequency and quality metrics from structural parameters.

B. Admittance Reconstruction with Accurate Spurious Modes

To enable spurious mode analysis and band-edge evaluation
shown in Fig. 13, the full admittance spectrum is predicted
from structural inputs like Section A using the ExtraTrees
model, whose fitting ability on the related dataset is further
enhanced through hyperparameter optimization with Optuna.
Representative results shown in Fig. 14 illustrate close
alignment between predicted and verified responses across
main and spurious modes, while correctly reproducing the
Bode Q profile and its maximum. Key performance
parameters extracted from the predicted spectrum are
summarized in Table V. Across the 25% held-out test set, the
coefficient of determination of admittance prediction remained
above 0.99 with mean squared errors in the order of 1073,
confirming that the proposed approach reliably supports
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frequency-domain design verification. Compared with full-
wave simulations and repeated measurements, this predictive
framework  substantially reduces computational and
experimental cost while preserving accuracy in spurious mode
identification.

TABLE V

COMPARISON OF GROUND TRUTH AND RESONATOR PARAMETERS
EXTRACTED FROM PREDICTED ADMITTANCE

Parameters True Pred Error
fs (GHz) 0.763 0.764 0.0013
f» (GHz) 0.791 0.791 0.0000
k? (%) 9.05 8.98 0.0077
Qs 146.0 146.7 0.0048
Qp 158.2 158.2 0.0000
Bode Qnqx 7932.3 7787.4 0.0183
Bode Q Freq. (GHz) 0.776 0.775 0.0013

C. Sparse Spectrum Recovery Using CNN

After identifying the resonance points and spurious mode
locations, a down-sampling process is applied to reduce the
full 26,000-point admittance spectrum to 1,024 representative
frequency points, as illustrated in Fig. 15. In this framework,
only a small set of informative anchor points is retained, such
as resonance and anti-resonance frequencies, spurious peaks
identified by vector fitting, and slope-change features, which
serve as the minimal descriptors of each device response.
Around these critical points, dense sampling is applied to
accurately capture local spectral variations, while the
remaining regions are sampled more coarsely to reduce overall
data requirements.

To further reduce both modeling and data-acquisition costs,
particularly as traditional tree-based models become
increasingly complex with larger datasets, a CNN-based
architecture is employed to reconstruct the complete
admittance response from sparsely sampled data, including the
real, imaginary, and magnitude components. As shown in
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Fig. 15. Dense sampling at critical points improves spectrum fidelity: (a)
feature-aware annotations for dense resampling; (b) accurate reconstruction
of resonance features in the whole test frequency range; (¢) zoomed-in near
passband.
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Fig. 16. Sparse-to-full reconstruction of complex admittance using 64, 32,
and 16 points, which demonstrates strong reconstruction capability, even with
highly compressed input.

Fig. 16, the model can recover the complete spectrum with
high fidelity using only 16 uniformly spaced frequency points,
representing a 98% reduction in resolution from the original
1,024-point input. The R? score for all samples across the 25%
test set remains above 0.98, validating the model's
effectiveness in reducing both simulation and test-time
bandwidth requirements without sacrificing spectral accuracy.
This property makes the method particularly attractive in
wafer-level testing scenarios, where reducing the number of
VNA sweep points per device directly translates into shorter
test times and lower cost.

D. Sim-to-Real Framework for Small Size of Test Data

Collecting large volumes of measured data remains costly
and time-consuming. In previous stages, our models were
trained on a large industrial-scale dataset comprising 14,883
verified samples. In practice, however, such extensive
measurement may not always be feasible. To reduce models’
reliance on fabricated samples, a simulation-to-real (Sim-to-
Real) learning algorithm is proposed. 10,000 simulated
samples are first used as prior knowledge to capture the
underlying = structural-performance trends. Then, varying
fractions of the 243-device measurement dataset are
incorporated to compensate for the difference between
simulation and tape-out. As shown in Fig. 17, the Sim-to-Real
library consistently outperforms the traditional library trained
solely on measured data (both MSE and R?), particularly
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Fig. 17. Impact of training set size on MSE and R? score between a small
amount of test data only (dotted line) and Sim-to-Real PDK (solid line).

when the available measurement data is limited. This is
particularly relevant in early-stage prototyping or wafer-level
yield estimation, where only a small subset of devices can be
measured. This approach represents the first attempt to reduce
the amount of measured data required for training task-
specific models in MEMS acoustic resonators’ design, thereby
lowering experimental cost.

E. Intelligent design example: Auto-Generation of the New
Spurious-Free Design

Based on the preceding stages, an Al-assisted PDK is
constructed by integrating simulation-driven predictions with
measured device data. This library serves as a knowledge base
that stores validated structure—performance mappings,
enabling both forward prediction and inverse design. When a
user specifies a target requirement, such as a desired
resonance frequency range, high quality factor, or suppression
of spurious responses, the system performs a direct query over
the PDK and retrieves candidate resonator designs that satisfy
these constraints.

As illustrated in Fig. 18, the design workflow allows
interactive specification of performance targets followed by
instant retrieval of matching device parameters. For example,
when target series-resonance frequencies of 0.915 GHz
(fmeasure = 0.9148 GHz) and 0.850 GHz (feqsure = 0.8516
GHz) with the same static capacitance (Cp_gesign = 8.6 pF,
Co measure 8.601 pF) are specified, the Al engine
synthesizes two previously unseen resonator designs, each
characterized by a distinct set of structural parameters (metal
ratio, pitch, aperture, and IDT number). Their predicted
admittance spectra align closely with the measured curves
from fabricated devices, indicating physical realizability and
effective suppression of spurious responses. Crucially, these
designs are generated rather than retrieved: they do not
correspond to any existing entry in the PDK and thus expand
the library with validated, spurious-free solutions tailored to

# Specify target frequency

target_freql = ; target_freq2 = #Hz

Target_ C0=8.6 # pF

# Al engine to generate resonator parameters
(resonator_params)

{targetl: ‘MR’: 0.65, 'pitch’: 1.8 um, 'aperture’: 126 um,'IDT_num’: 185}
{target2: ‘MR’: 0.65, 'pitch’: 2.3 um, 'aperture’: 162 um, 'IDT_num’: 185}
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Fig. 18. Pseudocode workflow for Al-Assisted generation and validation
results of new spurious-free resonators.

the requested targets.

IV. CONCLUSION

This work presents an Al-driven design—test framework for
MEMS acoustic resonators that systematically reduces
reliance on multiphysics simulations and extensive wafer-level
measurements. By incorporating regression-based parameter
prediction, full-spectrum reconstruction, spurious mode
quantification, and sparse recovery via CNNs, the framework
achieves high predictive accuracy while substantially lowering
computational and measurement costs. Experimental
validation on a dataset of 14,883 industry-verified devices,
10,000 simulated structures, and 283 fabricated samples
demonstrates that resonance and anti-resonance frequencies
can be predicted with R? = 1.000, electromechanical coupling
(k?) and quality factors (Qs, Q,) with R* > 0.99, and full
admittance spectra with mean squared error on the order of
1073, The sparse spectrum recovery further reconstructs the
complete admittance curve from as few as 16 frequency
samples, corresponding to a 98% reduction in measurement
density, while preserving R?> > 0.98. A simulation-to-real
transfer mechanism ensures robustness when limited
experimental data are available, and all outputs are
consolidated into an Al-assisted PDK that supports both
forward prediction and reverse design: it can auto-generate
previously unseen, spurious-free resonators that meet user-
specified targets and match fabricated measurements, thereby
converting the library from a passive repository into an active
synthesis engine. These advances bridge simulation and
fabrication, offering a scalable and validated solution for the
intelligent design and testing of MEMS acoustic resonators.
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