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Abstract—Surface acoustic wave (SAW) resonators are a 

cornerstone in 5G/6G radio-frequency (RF) front ends owing 
to their compact form factor, strong electromechanical 
coupling, and compatibility with massive wafer-level 
manufacturability. Despite these advantages, conventional 
design–test workflows remain heavily reliant on full-wave 
multiphysics simulations, repeated tape-outs, and exhaustive 
vector network analyzer (VNA) sweeps. Such processes incur 
high cost, long iteration cycles, and limited scalability, while 
spurious modes and parasitic effects are difficult to capture 
accurately. To overcome these challenges, an AI-driven 
design–test prediction framework is developed to accelerate 
modeling, validation, and optimization of SAW resonators. A 
comprehensive dataset comprising 14,883 industry-verified 
devices, 10,000 simulated structures, and 283 fabricated 
samples is utilized for training and evaluation. The 
framework predicts basic metrics with coefficient 
determination (R2)>0.99. It further reconstructs full 
admittance spectra directly from structural parameter inputs 
using ensemble regressors, yielding mean-squared error (𝑴𝑴𝑴𝑴𝑴𝑴) 
on the order of 𝟏𝟏𝟎𝟎−𝟑𝟑 and enabling accurate identification of 
spurious responses. Furthermore, a CNN-based sparse 
recovery method reconstructs spectra with only 16 frequency 
points, representing a 98% reduction from the original 1,024 
points, while preserving R2>0.98. Beyond prediction, an AI-
assisted process design kit (PDK) supports generative design: 
given target constraints, the system automatically synthesizes 
previously unseen, spurious-free resonators whose predicted 
spectra align with measurements, expanding the PDK with 
validated designs. Together, these capabilities bridge design 
and fabrication, substantially reduce simulation and 
measurement burden, and provide a scalable path toward AI-
driven design automation of MEMS acoustic devices for next-
generation RF applications. 
 
Index Terms—Surface acoustic wave (SAW) resonators; MEMS; 
artificial intelligence (AI); Convolutional Neural Network (CNN); 
spectrum reconstruction; spurious mode analysis; sparse 
recovery; process design kit (PDK).  
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I. INTRODUCTION 
HE rapid evolution of wireless communication 
standards toward 5G and 6G has placed unprecedented 
demands on radio-frequency (RF) front-end 

components. Surface acoustic wave (SAW) devices remain 
indispensable in this context due to their compact form factor, 
inherently low insertion loss, and compatibility with large-
scale manufacturing [1]. To support higher frequency bands, 
wider bandwidths, and stricter linearity requirements, 
significant efforts have been made to engineer both substrate 
materials [2], [3], [4], [5] and device architectures [6], [7], [8] 
are being explored. Among these advances, the 42° Y-cut, X-
propagating lithium tantalate (42° YX LT) substrate has 
gained prominence as a cornerstone technology. It provides a 
favorable balance of electromechanical coupling, temperature 
stability, and achievable quality factor (Q), positioning it as a 
leading candidate for next-generation RF filters [9], [10]. 
Recent developments such as piezoelectric-on-insulator (POI) 
and incredible high-performance (IHP) SAW structures [11], 
[12] have further extended the utility of 42° YX LT, enabling 
improved energy confinement, enhanced Q values, and wider 
design flexibility. 

Despite these advantages, the design and optimization of 
such MEMS-based acoustic resonators, particularly for wafer-
level fabrication processes, still face several practical 
bottlenecks. Like other vibrating MEMS devices, targeted 
SAW resonators are also highly sensitive to process variations 
across foundries, leading to deviations in key performance 
metrics such as spurious modes, electromechanical coupling 
(𝑘𝑘𝑡𝑡2), and Q [13], [14]. The conventional development cycle 
remains heavily reliant on iterative full-wave electromagnetic 
(EM)–acoustic simulations, followed by multiple tape-outs 
and measurement steps for model verification and tuning. This 
workflow is inherently time-consuming and labor-intensive 
[15], [16], particularly when extended to wafer-level yield 
prediction or large-scale design space exploration. 
Furthermore, spurious responses [17] and subtle parasitic 
effects [18], [19] are often difficult to capture accurately in 
physics-based compact models, adding to the reliance on 
empirical correction after fabrication. These constraints slow 
down innovation and limit the scalability of acoustic resonator 
design for mass production, at a time when the market is 
rapidly expanding with application-specific requirements for 
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TABLE I 
 

STATE OF THE ART OF THE AI-BASED MICROELECTRONICS AND MICROSYSTEMS   
 
 

Comparison Yan et al. [20] Liu et al. [21] Akinwande et 
al. [22] Sui et al. [23] Zhang et al. 

[24] Zuo et al. [25] This Work 

Multi-targeted objective No Yes Yes No Yes Yes Yes 
Optimization methodology Single target Multi targets Multi targets Multi targets Multi targets Multi targets Multi targets 
Database utilization No Yes Yes Yes Yes Yes Yes 
Automatic design No Yes Yes Yes Yes Yes Yes 
Simulations independence No No Low High High High High 
Measurement efficiency No No No No Partial No Yes 
Scalability Costly No No No No No Yes 
Experimental validation Yes No No Yes Yes Yes Yes 

 
diverse 5G/6G bands [26]. 

Recent advances in artificial intelligence (AI) offer a 
compelling opportunity to address the long-standing 
limitations in microelectronics and microsystems design. AI 
techniques have already demonstrated substantial impact in 
electronic design automation (EDA) [27], circuit modeling 
[28], and process variation prediction [29]. Table I provides a 
state-of-the-art comparison of representative approaches, 
including spanning traditional fabrication-driven methods [20], 
machine-learning-assisted design frameworks shown in [21], 
[23], transfer learning for EM modeling [22], device-level 
optimization in acoustic resonators [24], and multi-target 
inverse design algorithms [25]. As highlighted in Table I, 
earlier works are often limited to single-target optimization or 
rely heavily on large-scale simulations, with scalability and 
experimental validation remaining significant challenges. In 
contrast, the proposed work achieves a multi-targeted 
objective, covering both performance metrics and full-
spectrum reconstruction, while demonstrating simulation-
efficient modeling, sparse measurement recovery, and wafer-
level scalability with experimental validation. This positions 
this work as a unified AI-driven pipeline that bridges design 
automation, simulation reduction, fabrication-oriented, and 
large-scale measurement validation. 
    In this study, an AI-driven design–test framework for SAW 
resonators is investigated. Specifically, physics-informed 
regressors are developed to predict key scalar metrics and to 
reconstruct the full admittance spectrum; a CNN-based sparse-
spectrum recovery enables fast wafer-level testing; spurious-

mode quantification guides suppression strategies; and an AI-
assisted PDK supports both forward prediction and generative 
inverse design of new, spurious-free structures. Section II 
details the modeling pipeline and the multi-physics equations 
used for interpretability. Section III reports modeling and 
measurement results on a mixed dataset. Lastly, a brief 
conclusion is provided in Section IV.  

II. ACOUSTIC RESONATOR DESIGN METHODOLOGY 
The traditional process flows for MEMS acoustic resonator 

production, especially mass production, require these devices 
to be manually designed, iteratively simulated, and fabricated 
round by round, with final fine frequency-domain 
measurements. While this approach ensures accuracy, it 
inevitably incurs heavy reliance on full-wave simulations and 
multiple tape-outs, leading to time-consuming iterations, high 
costs, and limited scalability at the wafer level. Such 
bottlenecks restrict rapid exploration of the design space and 
hinder efficient performance optimization.  

Recent progress in artificial intelligence provides an 
alternative path that AI models can serve as accelerators 
within the resonator design loop shown in Fig. 1. Integrating a 
modeling engine into the feedback cycle allows structural 
parameters and sparse sampling data to be directly mapped to 
key device metrics and even the full admittance spectrum. 
This enables prediction without exhaustive simulations, 
recovery of dense responses from limited measurements, and 
compensation across wafers. In this way, the loop evolves 
from a resource-intensive cycle into an AI-augmented 

 
 

Fig.  1. AI-accelerated design-test-tape out loop for performance and cost optimization. 
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framework capable of fast, low-cost, and scalable optimization. 
To simplify, Fig. 2 compares the conventional design–test 
loop with the AI-driven alternative. In the traditional 
workflow [Fig. 2(a)], repeated simulations, tape-outs, and full 
measurements are required, resulting in high cost and limited 
scalability. By contrast, the AI-assisted workflow [Fig. 2(b)] 
relies on a parametric design library and sparse testing to 
achieve faster validation and more efficient wafer-level 
optimization. 

A. Normal SAW Resonators’ Design–Test Framework 
Traditionally, the design–test workflow is initiated by 

specifying a target operating frequency for the intended 
devices, such as the desired filters [30], oscillators [31], 
duplexers [32], wireless tags or sensors [33], which relies on 
the relation between elastic wave propagation in solids and the 
geometrical periodicity of the interdigital transducer (IDT) 
structure. For a deformable solid, the local form of Newton’s 
second law reads:                  

𝜌𝜌
𝑑𝑑𝑣𝑣𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝐹𝐹𝑖𝑖 +
𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 (1) 

where ρ is the density, 𝑣𝑣𝑖𝑖  the particle velocity, and σ𝑖𝑖𝑖𝑖  the 
stress tensor. Assuming small deformations, the linear stress–
strain relation generalizes Hooke’s law: 

 
σ𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ε𝑘𝑘𝑘𝑘 , (2) 

𝜀𝜀𝑘𝑘𝑘𝑘 =
1
2
�
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑙𝑙

+
𝜕𝜕𝑢𝑢𝑙𝑙
𝜕𝜕𝑥𝑥𝑘𝑘

� (3) 

where 𝒖𝒖  is the displacement vector and 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  the stiffness 
tensor. For an isotropic medium, Eq. (1) reduces to the wave 
equation: 

 

ρ
∂2𝒖𝒖
∂𝑡𝑡2

= (𝜆𝜆 + 2𝜇𝜇)∇(∇ ⋅ 𝒖𝒖) − 𝜇𝜇∇ × (∇ × 𝒖𝒖) (4) 

where λ and μ are the Lamé constants. This admits two bulk 
wave solutions with distinct velocities: 

 

𝑉𝑉𝐿𝐿 = �
λ + 2μ
𝜌𝜌

, 𝑉𝑉𝑇𝑇 = �
𝜇𝜇
𝜌𝜌

 (5) 

Considering a plane sinusoidal wave of the form 𝒖𝒖(𝑥𝑥, 𝑡𝑡) =

𝑢𝑢0𝑒𝑒𝑗𝑗(ω𝑡𝑡−𝑘𝑘𝑘𝑘), the dispersion relation is obtained: 

𝑘𝑘 =
2π
λ

,  ω = 2π𝑓𝑓,  𝑣𝑣ph =
ω
𝑘𝑘

 (6) 

In the case of Rayleigh waves propagating on the free 
surface of a semi-infinite isotropic solid, the velocity 𝑉𝑉𝑅𝑅  is 
given by the secular equation involving 𝑉𝑉𝐿𝐿 and 𝑉𝑉𝑇𝑇 [34]: 

 

�2 −
𝑉𝑉𝑅𝑅2

𝑉𝑉𝑇𝑇2
�
2

= 4��1 −
𝑉𝑉𝑅𝑅2

𝑉𝑉𝑇𝑇2
� �1 −

𝑉𝑉𝑅𝑅2

𝑉𝑉𝐿𝐿2
� (7) 

Since 𝑉𝑉𝑅𝑅  depends only on the material properties (λ, 𝜇𝜇,𝜌𝜌) 
and not on frequency, the operating frequency of a SAW 
device is explicitly determined by the IDT pitch: 

 

𝑓𝑓0 =
𝑉𝑉𝑅𝑅
λ

=
𝑉𝑉𝑅𝑅

2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ
 (8) 

where λ corresponds to the acoustic wavelength set by the 
electrode periodicity, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ is the sum of electrode width 
and gap. For 42° YX LT, 𝑉𝑉𝑅𝑅  should reach around 4211 m/s 
[14]. Then, the coupling coefficient is tuned via electrode duty 
cycle and normalized thickness ℎ𝑠𝑠𝑠𝑠𝑠𝑠 𝜆𝜆⁄  [3], where ℎ𝑠𝑠𝑠𝑠𝑠𝑠 means 
the thickness of substrate, which is labeled in Fig. 3. The 
electromechanical coupling coefficient (𝑘𝑘𝑡𝑡2 ) quantifies how 
efficiently electrical energy is converted into acoustic wave 
energy in piezoelectric media and SAW devices. For a linear 
piezoelectric solid under small strains, the coupled equations 
are: 

𝑻𝑻 = 𝒄𝒄𝑬𝑬𝑺𝑺 − 𝒆𝒆𝑻𝑻𝑻𝑻,𝑫𝑫 = 𝒆𝒆𝒆𝒆 + 𝜺𝜺𝑺𝑺𝑬𝑬 (9) 

where 𝑻𝑻,𝑺𝑺 are stress and strain, 𝑬𝑬,𝑫𝑫 are electric field and 
displacement, 𝒄𝒄𝑬𝑬 is the elastic stiffness at constant field, 𝛆𝛆𝐒𝐒 is 
the permittivity at constant strain, and 𝒆𝒆 is the piezoelectric 
matrix. The time-averaged energy density of a harmonic wave 
is: 

𝑊𝑊 =
1
2

(𝑺𝑺𝑻𝑻𝑻𝑻 + 𝑬𝑬𝑻𝑻𝑫𝑫) (10) 

For a given vibration mode 𝑀𝑀, the dimensionless coupling 
coefficient 𝐾𝐾𝑀𝑀2  measures the fraction of total energy that can 
be exchanged between electrical and mechanical domains. A 
convenient form compares the phase velocities under open- 
and short-circuited electrical boundary conditions: 

 

𝐾𝐾𝑀𝑀2 =
𝑣𝑣open
2 − 𝑣𝑣short

2

𝑣𝑣open
2 ≈   2 

𝑣𝑣open − 𝑣𝑣short

𝑣𝑣open
 (11) 

This expression highlights that the velocity reduction 
induced by short-circuit boundary conditions is a direct 
measure of electromechanical coupling strength. In one-
dimensional approximations (thickness or oriented single axis), 
Eq. (11) reduces to the commonly cited material form: 

 

𝐾𝐾2 ≈
𝑒𝑒𝑖𝑖𝑖𝑖2

ε𝑖𝑖𝑖𝑖 𝑐𝑐𝑗𝑗𝑗𝑗𝐸𝐸
 (12) 

 
Fig.  2. Comparison of (a) traditional and (b) AI-driven design-test flows 
for SAW resonators. 
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with 𝑒𝑒𝑖𝑖𝑖𝑖 , ε𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑗𝑗𝑗𝑗𝐸𝐸  being the relevant material constants. This 
provides a material-level indicator of the intrinsic coupling 
strength. In practical SAW resonators, electrode mass loading, 
electrical loading, and acoustic radiation modify the 
observable resonance behavior. The effective coupling 
coefficient 𝑘𝑘t

2  is therefore defined from the measurable 
resonance (𝑓𝑓𝑠𝑠) and anti-resonance (𝑓𝑓𝑝𝑝) frequencies [35]: 

 

𝑘𝑘𝑡𝑡2 =  (
𝜋𝜋
2

×
𝑓𝑓𝑠𝑠
𝑓𝑓𝑝𝑝

) tan(
𝜋𝜋
2

×
𝑓𝑓𝑠𝑠
𝑓𝑓𝑝𝑝

)�   (13) 

For practical calculations, the 𝑘𝑘t
2 can be approximated as: 

 

𝑘𝑘𝑡𝑡2 ≈
π2

8
⋅
𝑓𝑓𝑝𝑝2 − 𝑓𝑓𝑠𝑠2

𝑓𝑓𝑠𝑠2
  (14) 

Consider a one-port resonator characterized by input 
admittance 𝑌𝑌11(𝑓𝑓) = 𝐺𝐺(𝑓𝑓) + 𝑗𝑗𝑗𝑗(𝑓𝑓)  (or reflection 𝑆𝑆11(𝑓𝑓) ) 
referenced to 𝑍𝑍0 = 50 Ω. The quality factor of a resonator is 
defined as the ratio between the resonance frequency and the 
corresponding 3-dB bandwidth. At the series resonance 𝑓𝑓𝑠𝑠, this 
yields the series quality factor 𝑄𝑄𝑠𝑠 = 𝑓𝑓𝑠𝑠/Δ, while at the parallel 

resonance 𝑓𝑓𝑝𝑝, the parallel quality factor is similarly given by 
𝑄𝑄𝑝𝑝 = 𝑓𝑓𝑝𝑝/Δ𝑓𝑓𝑝𝑝. Both quantities characterize the energy storage 
relative to loss at the respective resonance and anti-resonance 
frequencies. 

For a loss-limited single-port described by reflection 
coefficient Γ(𝑓𝑓) = 𝑆𝑆11(𝑓𝑓) , the Bode 𝑄𝑄  is defined from the 
frequency-sensitivity of the input impedance (equivalently, the 
phase slope of Γ): 

 

𝑄𝑄Bode(𝑓𝑓)  =  
ω τ𝑔𝑔(𝑓𝑓) |Γ(𝑓𝑓)|

1 − |Γ(𝑓𝑓)|2 ,ω = 2π𝑓𝑓,  𝜏𝜏𝑔𝑔(𝑓𝑓) ≜ −
𝜕𝜕 arg Γ
𝜕𝜕𝜕𝜕   (15) 

Using numerical differentiation with frequency in Hz, this 
can be evaluated as 

 

QBode(f)  =  
2𝜋𝜋𝜋𝜋 �−𝜕𝜕 arg𝑆𝑆11

𝜕𝜕𝜕𝜕 �  |𝑆𝑆11(𝑓𝑓)|

1 − |S11(f)|2 
 (16) 

 
This expression is exactly what we compute in code to obtain 
a frequency-dependent 𝑄𝑄Bode(𝑓𝑓) ; the reported 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 is the 
maximum within �𝑓𝑓𝑠𝑠, 𝑓𝑓𝑝𝑝�. 

The design of SAW resonators, fundamentally, considering 
all the performance metrics mentioned above, begins with the 
determination of key structural parameters, such as the 

 
 
Fig.  3. Illustration of SAW resonator and zoomed in IDT layout. 

TABLE II 
 

STRUCTURAL PARAMETERS IN SAW DEVICE DESIGN 
 

Symbol Description Training 
A [μm] Aperture Included 
𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼  Number of IDT electrodes Included 
𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅  Number of reflector fingers Excluded 
𝑊𝑊𝑒𝑒 [um] Electrode width Included 
G [um] Electrode gap Included 
Pitch [μm] Electrode pitch: 𝑊𝑊𝑒𝑒 + G Included 
MR Metal ratio: 𝑊𝑊𝑒𝑒 / Pitch Included 
ℎ𝐴𝐴𝐴𝐴 [nm] Al thickness Included 
ℎ𝑇𝑇𝑇𝑇 [nm] Ti thickness Included 
ℎ𝑠𝑠𝑠𝑠𝑠𝑠 [μm] Substrate thickness Included 
𝐵𝐵𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼 [um] Busline width of IDT Excluded 
𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑅𝑅 [um] Busline width of reflector Excluded 
𝐵𝐵𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼 [um] Busline length of IDT Excluded 
𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑅𝑅 [um] Busline length of reflector Excluded 

 
 

 

… …
Interdigital Transducer (IDT)

Cross section viewZoomed-in

 
 

Fig.  4. AI-based design–test pipeline for SAW resonators.  
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electrode pitch and the LiTaO3 substrate thickness. Once these 
are specified, the conventional workflow relies on iteratively 
tuning a broad set of structural variables, as illustrated in Fig. 
3 and summarized in Table II, using multiphysics simulations 
to achieve the desired performance.  

However, these parameter variations not only affect the 
acoustic properties of the target resonance mode but also 
introduce undesired spurious responses, originating from other 
acoustic modes or even EM coupling. This makes the 
optimization process highly dependent on fine parameter 
adjustments and repeated simulations, creating substantial 
design overhead. Even if an apparently optimal configuration 
is identified through simulation, process-induced variations 
during fabrication pose another critical challenge. Systematic 
deviations in dimensions or film thickness, unavoidable in 
fixed manufacturing processes, can shift the device away from 
its intended operating point. As a result, the fabricated 
resonator may fail to deliver the simulated optimum, forcing 
repeated cycles of redesign and re-optimization in order to 
meet performance specifications. Meanwhile, at the wafer 
level, production testing introduces further inefficiencies. 
Accurate characterization requires wideband frequency 
sweeps with fine resolution to capture resonance and spurious 
behavior. Since each frequency point measured by the vector 
network analyzer (VNA) incurs non-negligible computation 
time, scaling this procedure to hundreds or thousands of 
devices on a single wafer results in prohibitive measurement 
cost and time. 

B. Multi-Stage AI Modeling Pipeline 
The proposed AI-based framework replaces simulation-

intensive and tape-out-dependent processes with a multi-stage 
modeling pipeline, as illustrated in Fig. 4. The pipeline begins 
with the prediction of scalar performance metrics, such as the 
resonance frequency ( 𝑓𝑓𝑠𝑠 ), anti-resonance frequency ( 𝑓𝑓𝑝𝑝 ), 
electromechanical coupling coefficient (𝑘𝑘𝑡𝑡2 ), quality factors 
(including 𝑄𝑄𝑠𝑠, 𝑄𝑄𝑝𝑝, and Bode 𝑄𝑄), directly from basic structural 
parameters (e.g., A, 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼, Pitch, MR, and so on). This serves 
as an efficient substitute for multiphysics simulations when 
only a quick preliminary check is needed during early-stage 
design.  

As illustrated in Fig. 5, the prediction of scalar performance 
metrics is formulated as a supervised regression task. A 
comprehensive training dataset is constructed from 10,000 
simulated resonator responses generated through COMSOL 
parameter sweeps, aligned with the discussions in Section A, 
with the corresponding modeling settings shown in Fig.6. 
Each device structure is encoded into a feature vector, while 
the associated performance labels are extracted from 
simulation or measurement. Using this dataset, multiple 
regression models, including linear regressors, support vector 
regression, and ensemble tree methods, are trained and 
benchmarked on a held-out testing set. 

Model performance is evaluated using two standard metrics: 
the mean squared error (MSE) [36]: 

 

MSE  =  
1
𝑛𝑛
 �(𝑦𝑦𝑖𝑖  −  𝑦𝑦𝚤𝚤�)2
𝑛𝑛

𝑖𝑖=1

 (17) 

 
which quantifies the average squared difference between 
predicted values 𝑦𝑦𝚤𝚤�  and ground truth values 𝑦𝑦𝑖𝑖, where 𝑛𝑛 is the 
number of total samples. 

Another is the coefficient of determination (𝑅𝑅2): 
 

𝑅𝑅2  =  1  −  
∑  (𝑦𝑦𝑖𝑖  −  𝑦𝑦𝚤𝚤�)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖  −  𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1  

 (18) 

where 𝑦𝑦� is the mean value of the ground truth values. A 𝑅𝑅2 
score close to 1 indicates high predictive accuracy; a score less 
than 0 implies worse-than-mean performance. 

As shown in Table III, ensemble tree-based methods such 
as Random Forests and XGBoost achieved the lowest 
prediction error and the highest 𝑅𝑅2  values. This superior 
accuracy can be attributed to their ability to capture complex 
nonlinear relationships and feature interactions among 
resonator structural parameters, which are not well modeled 
by linear baselines. 

To extend beyond scalar performance metrics, the 

 
 
Fig.  5. Workflow of performance metric prediction using regression models. 

Training dataset Features Build regression models

Testing dataset Same features

Model inference

Performance

Label: performance

Input: [Metal ratio, Aperture, Fingers, Pitch] Evaluate model 
candidates 

Select best model

TABLE III 
 

PREDICTIVE ACCURACY OF BASELINE MODELS 
 

Model MSE 𝑹𝑹𝟐𝟐 
Ridge 0.0102 0.9899 
Lasso 0.2896 0.6304 
Elastic Net 0.0823 0.9195 
Gradient Boosting 0.0049 0.9951 
Random Forest 0.0034 0.9967 
XGBoost 0.0028 0.9972 
CatBoost 0.0031 0.9969 

 
 

 

 
 
Fig.  6. COMSOL simulation model of Al/Ti on a LiTaO₃ substrate. 
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framework incorporates full-spectrum reconstruction. An 
ExtraTrees regression model similar to the framework in Fig. 
5 is employed to map structural parameters directly to the 
complete admittance response, including the real, imaginary, 
and magnitude components, which not only reproduces the 
main resonance but also resolves fine spectrum features, 
thereby enabling accurate virtual evaluation of device 
behavior without the need for exhaustive frequency-domain 
sweeps. 

Given the critical role of parasitic resonances, spurious 
mode quantification is incorporated as an additional stage. In 
this step, vector fitting (VF) is applied to the admittance 
response to extract poles and identify secondary peaks that 
make significant contributions to spurious behavior. Based on 
these features, a spurious score (Sc) is defined by combining 
the number and strength of the extracted poles and peaks and 
is integrated as a complementary performance metric: 

𝑆𝑆𝑆𝑆  =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 2 (19) 

Poles are extracted using the vector fitting (VF) algorithm, 
while peaks and valleys are identified by manual definition. 
This comparison, shown in Fig. 7, demonstrates that the 
spurious score can quantitatively distinguish resonators with 
different levels of spectral purity, enabling an objective 
assessment of spurious behavior. In this way, information on 
spurious responses, beyond the main resonances, can be 
systematically incorporated into subsequent modeling and 
optimization. 

To further reduce modeling and data collection costs, the 
workflow transitions from full-band regression to a sparse-
spectrum recovery strategy. While tree-based regressors can 
predict fine-grained admittance curves, their model 
complexity and data requirements scale rapidly with 
increasing training size and spectrum resolution. To address 
this, a small set of informative discrete points, such as 
resonance and anti-resonance anchors, spurious peaks 
identified through vector fitting, and slope-change knots, is 
first extracted. A modified convolutional neural network 
(CNN) shown in Fig. 8 is then trained to reconstruct the 
complete admittance response from these sparse samples. The 
method is applicable both in simulation, by reducing the 
number of solver evaluations per structure, and in wafer-level 
testing, by shortening the number of VNA sweep points per 
device, thus delivering substantial efficiency gains without 
sacrificing spectral accuracy. 

Finally, the outputs of all modeling stages are consolidated 
into an AI-assisted process design kit (PDK), just as shown in 
Fig. 9. The PDK stores multiple candidate designs, allows 
rapid comparison of performance curves, and supports layout-
level optimization across frequency bands and fabrication 
conditions, enabling efficient reuse and fast iteration. Beyond 
serving as a design library, the PDK also embeds a simulation-
to-real (Sim-to-Real) framework that leverages abundant 
simulated samples to reduce reliance on costly measurements, 
requiring only a small subset of experimental results for 
accurate calibration. This combined capability lowers the 
burden of wafer-level testing while enhancing the scalability 
of the AI-assisted workflow for practical resonator design. 

C. Detailed Models and Algorithms of Proposed Baseline 
Just as mentioned in Section. B, the modeling pipeline 

begins by parsing filenames or design files to extract structural 
parameter vectors 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑  (e.g., 𝐴𝐴 , 𝑁𝑁IDT , 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖ℎ , 𝑀𝑀𝑀𝑀 , etc.), 
along with full admittance spectrum admittance 𝑌𝑌(𝑓𝑓) =
[𝑌𝑌Re(𝑓𝑓),𝑌𝑌Im(𝑓𝑓), |𝑌𝑌(𝑓𝑓)|dB] ∈ 𝑅𝑅𝟛𝟛×𝐿𝐿  for either simulated or 
measured samples. These are aligned and persisted as 
{𝑋𝑋,𝑌𝑌, split}, where 𝑌𝑌Re and 𝑌𝑌Im denote the real and imaginary 
components, and |𝑌𝑌|dB represents the log-magnitude. 

To predict scalar metrics, we train a family of regressors 
ℱ = {Ridge,  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, XGBoost, CatBoost ...} to map: 

𝑓𝑓scalar: 𝑥𝑥 ↦ 𝑚𝑚 = �𝑓𝑓𝑠𝑠, 𝑓𝑓𝑝𝑝, 𝑘𝑘𝑡𝑡2,𝑄𝑄𝑠𝑠,𝑄𝑄𝑝𝑝,𝑄𝑄Bode� (20) 

Prediction accuracy is evaluated via mean squared error 

 
Fig.  7. Illustration of spurious score on resonator admittance Spectrum. 

 
 
Fig.  8. Modified CNN framework for reconstructing full-resolution spectrum 
from sparse inputs. 
 

 
 
Fig.  9. Transition from simulation-only loop to sim-to-real transfer PDK 
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(MSE) and coefficient of determination (𝑅𝑅2) shown in Eq. (17) 
and Eq. (18).  

The full admittance spectrum is reconstructed by training 
two regressors: 

𝑔𝑔R,𝑔𝑔I: 𝑥𝑥 ↦ 𝑌𝑌Re� ,  𝑌𝑌Im� ∈ 𝑅𝑅𝐿𝐿, (21) 

with the reconstructed log-magnitude computed as: 
 

�𝑌𝑌��
dB

= 20 log10 ��𝑌𝑌Re2� + 𝑌𝑌Im2� + ε� (22) 

The total spectrum loss is defined as the following equation 
to have a faster convergence: 

 

ℒse = 0.3 MSE�𝑌𝑌Re,𝑌𝑌Re� � + 0.3 MSE�𝑌𝑌Im,𝑌𝑌Im� � 
 

+0.4 MSE �|𝑌𝑌|dB, �𝑌𝑌��
dB� 

(23) 

 
Spurious behavior is quantified by first applying vector 

fitting to 𝑌𝑌�(𝑓𝑓) to extract poles 𝒫𝒫, followed by detecting peak 
and valley indices 𝒦𝒦pk  and 𝒦𝒦vl  on the dB-magnitude curve. 
The spurious score is defined as: 

𝑆𝑆𝑐𝑐 = |𝒫𝒫| + �𝒦𝒦pk� + |𝒦𝒦vl| − 2 (24) 

which aligns with Eq. (19). 
A saliency-based subsampling strategy is applied by 

computing: 

 (25) 

to allocate the sparse sampling set ℐ ⊂ {1, … , 𝐿𝐿} with higher 
density near 𝑓𝑓𝑠𝑠� ,𝑓𝑓𝑝𝑝�  and local extrema. 

Sparse reconstruction is performed using a masked U-Net 
with input tensor: 

 

𝑥𝑥 = �𝑌𝑌Reℐ ,  𝑌𝑌Imℐ ,  |𝑌𝑌|dB
ℐ ,  mask,  freq-enc,  𝑓𝑓𝑠𝑠/𝑓𝑓𝑝𝑝. . .-attn� 

 

𝑥𝑥 ∈ 𝑅𝑅𝟞𝟞×𝐿𝐿 
(26) 

 
An interpolated prior 𝑦𝑦�  is generated and attention-

modulated input is computed as: 

𝑥𝑥 ← 𝑥𝑥 ⋅ �1 + Conv1D(𝑥𝑥attn)� (27) 

Deep CNNs such as AlexNet [37], VGG [38], and ResNet 
[39] established the foundations of modern image recognition, 
showing that deeper networks can be effectively trained and 
scaled [40]. However, these architectures mainly target global 
representation learning. For reconstruction tasks with sparse or 
incomplete inputs, U-Net [41] provides a more suitable 
encoder–decoder structure with skip connections, enabling 
both global context extraction and local detail preservation. 

The network, which is based on the modified U-Net 
network, predicts the full spectrum 𝑌𝑌� ∈ 𝑅𝑅𝟛𝟛×𝐿𝐿, optimized under 
the composite loss, which is explained clearly by the 
following Algorithm 1. 

After executing the entire modeling pipeline, including 

scalar metric prediction, full-spectrum reconstruction, spurious 
mode quantification, and sparse recovery, Overall, the 
complete output of each design is organized into the PDK 
entry: 

𝑥𝑥ℰ = {x, fscalar(x), Y�(f), Sc} (28) 

enabling downstream selection and optimization, with optional 
Sim-to-Real calibration for measured alignment. 

III. RESULTS AND DISCUSSION 
To validate the proposed AI-driven methodology, a set of 

42° YX rotated lithium tantalate-based SAW resonators was 
simulated and fabricated. As summarized in Table II, the 
resonator performance is influenced by a complex interplay of 
structural parameters, among which a subset of 9 key variables 
in Table IV is selected as the models’ input for training 
(Including 𝑊𝑊𝑒𝑒  and 𝐺𝐺 ). The dataset consists of 14,883 de-
embedded admittance spectra from industry-verified 
structures, along with 10,000 simulated samples and 283 
fabricated and measurement samples. The microscope image 
of fabricated devices is shown in Fig. 10. All samples have 
been screened to ensure physical validity and consistency 

TABLE IV 
 

SUBSET OF TUNABLE TYPICAL PARAMETERS FOR PRACTICAL AND 
MODELING 

 

Design Parameters Simulation Measurement Verified data 
from industry* 

A [μm] -- 36-272 36-216 
𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼  -- 31-241 31-241 
Pitch [μm] 0.6-3.4 1.8-3.4 1.8-2.7 
MR 0.35-0.7 0.4-0.7 0.4-0.65 
ℎ𝐴𝐴𝐴𝐴 [nm] 70-450 220-450 350 
ℎ𝑇𝑇𝑇𝑇 [nm] 5-40 40 40 
ℎ𝑠𝑠𝑠𝑠𝑠𝑠 [μm] 100-350 200 200 
      * Accurate data verified by Spectron 
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across simulation domains.  

A. Performance Metrics Prediction Accuracy 
To achieve the full design-test workflow, the first modeling 

stage aims to predict key performance parameters directly 
from the structural input vector, as illustrated in Fig. 11. 
Motivated by its superior fitting performance in simulations, 
the XGBoost model was applied to industrial-grade data, 
trained on 75% labeled 1D vectors of 14,883 industry-verified 
samples, as shown in Table III. As reported in Fig. 12, the 

proposed regression model achieves nearly perfect agreement 
with the ground truth. Both the resonance and anti-resonance 
frequencies are predicted with 𝑅𝑅² = 1.0000  and negligible 
mean squared error, demonstrating the capability to precisely 
capture frequency behavior. Similarly, the electromechanical 
coupling factor ( 𝑘𝑘𝑡𝑡2 ) and quality factors ( 𝑄𝑄𝑠𝑠 , 𝑄𝑄𝑝𝑝 ) are 
reproduced with 𝑅𝑅2 > 0.99 , while the Bode quality factor 
maintains high accuracy with 𝑅𝑅2 = 0.9965 . These results 
confirm that the regression model can reliably extract both 
frequency and quality metrics from structural parameters. 

B. Admittance Reconstruction with Accurate Spurious Modes 
To enable spurious mode analysis and band-edge evaluation 

shown in Fig. 13, the full admittance spectrum is predicted 
from structural inputs like Section A using the ExtraTrees 
model, whose fitting ability on the related dataset is further 
enhanced through hyperparameter optimization with Optuna. 
Representative results shown in Fig. 14 illustrate close 
alignment between predicted and verified responses across 
main and spurious modes, while correctly reproducing the 
Bode 𝑄𝑄  profile and its maximum. Key performance 
parameters extracted from the predicted spectrum are 
summarized in Table V. Across the 25% held-out test set, the 
coefficient of determination of admittance prediction remained 
above 0.99 with mean squared errors in the order of 10−3 , 
confirming that the proposed approach reliably supports 

 
Fig.  11. Prediction of discretized resonator parameters from structural input. 

 

 
Fig. 12. Regression performance of XGBoost model on resonator parameters. 
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Fig.  10. Microscope image of one of fabricated devices. 
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Fig.  13. Inference of admittance spectrum with clear identification of 
spurious responses. 
 

 
Fig. 14. Features matching in passband and spurious mode artifacts, while 
recovering the Bode 𝑄𝑄 profile with correct peak position and magnitude. 
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frequency-domain design verification. Compared with full-
wave simulations and repeated measurements, this predictive 
framework substantially reduces computational and 
experimental cost while preserving accuracy in spurious mode 
identification. 

C. Sparse Spectrum Recovery Using CNN 
After identifying the resonance points and spurious mode 

locations, a down-sampling process is applied to reduce the 
full 26,000-point admittance spectrum to 1,024 representative 
frequency points, as illustrated in Fig. 15. In this framework, 
only a small set of informative anchor points is retained, such 
as resonance and anti-resonance frequencies, spurious peaks 
identified by vector fitting, and slope-change features, which 
serve as the minimal descriptors of each device response. 
Around these critical points, dense sampling is applied to 
accurately capture local spectral variations, while the 
remaining regions are sampled more coarsely to reduce overall 
data requirements. 

To further reduce both modeling and data-acquisition costs, 
particularly as traditional tree-based models become 
increasingly complex with larger datasets, a CNN-based 
architecture is employed to reconstruct the complete 
admittance response from sparsely sampled data, including the 
real, imaginary, and magnitude components. As shown in 

Fig. 16, the model can recover the complete spectrum with 
high fidelity using only 16 uniformly spaced frequency points, 
representing a 98% reduction in resolution from the original 
1,024-point input. The 𝑅𝑅2 score for all samples across the 25% 
test set remains above 0.98, validating the model's 
effectiveness in reducing both simulation and test-time 
bandwidth requirements without sacrificing spectral accuracy. 
This property makes the method particularly attractive in 
wafer-level testing scenarios, where reducing the number of 
VNA sweep points per device directly translates into shorter 
test times and lower cost. 

D. Sim-to-Real Framework for Small Size of Test Data 
Collecting large volumes of measured data remains costly 

and time-consuming. In previous stages, our models were 
trained on a large industrial-scale dataset comprising 14,883 
verified samples. In practice, however, such extensive 
measurement may not always be feasible. To reduce models’ 
reliance on fabricated samples, a simulation-to-real (Sim-to-
Real) learning algorithm is proposed. 10,000 simulated 
samples are first used as prior knowledge to capture the 
underlying structural–performance trends. Then, varying 
fractions of the 243-device measurement dataset are 
incorporated to compensate for the difference between 
simulation and tape-out. As shown in Fig. 17, the Sim-to-Real 
library consistently outperforms the traditional library trained 
solely on measured data (both 𝑀𝑀𝑀𝑀𝑀𝑀  and 𝑅𝑅2 ), particularly 

TABLE V 
 

COMPARISON OF GROUND TRUTH AND RESONATOR PARAMETERS 
EXTRACTED FROM PREDICTED ADMITTANCE 

 

Parameters True Pred Error 
𝑓𝑓𝑠𝑠 (GHz) 0.763 0.764 0.0013 
𝑓𝑓𝑝𝑝 (GHz) 0.791 0.791 0.0000 
𝑘𝑘𝑡𝑡2 (%) 9.05 8.98 0.0077 
𝑄𝑄𝑠𝑠  146.0 146.7 0.0048 
𝑄𝑄𝑝𝑝  158.2 158.2 0.0000 
Bode 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 7932.3 7787.4 0.0183 
Bode 𝑄𝑄 Freq. (GHz) 0.776 0.775 0.0013 
    

 
 

 
Fig.  15. Dense sampling at critical points improves spectrum fidelity: (a) 
feature-aware annotations for dense resampling; (b) accurate reconstruction 
of resonance features in the whole test frequency range; (c) zoomed-in near 
passband. 

 
Fig.  16.  Sparse-to-full reconstruction of complex admittance using 64, 32, 
and 16 points, which demonstrates strong reconstruction capability, even with 
highly compressed input. 
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when the available measurement data is limited. This is 
particularly relevant in early-stage prototyping or wafer-level 
yield estimation, where only a small subset of devices can be 
measured. This approach represents the first attempt to reduce 
the amount of measured data required for training task-
specific models in MEMS acoustic resonators’ design, thereby 
lowering experimental cost. 

E. Intelligent design example: Auto-Generation of the New 
Spurious-Free Design 

Based on the preceding stages, an AI-assisted PDK is 
constructed by integrating simulation-driven predictions with 
measured device data. This library serves as a knowledge base 
that stores validated structure–performance mappings, 
enabling both forward prediction and inverse design. When a 
user specifies a target requirement, such as a desired 
resonance frequency range, high quality factor, or suppression 
of spurious responses, the system performs a direct query over 
the PDK and retrieves candidate resonator designs that satisfy 
these constraints. 

As illustrated in Fig. 18, the design workflow allows 
interactive specification of performance targets followed by 
instant retrieval of matching device parameters. For example, 
when target series-resonance frequencies of 0.915 GHz 
(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.9148 GHz) and 0.850 GHz (𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.8516 
GHz) with the same static capacitance (𝐶𝐶0_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 8.6 pF, 
𝐶𝐶0_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 8.601 pF) are specified, the AI engine 
synthesizes two previously unseen resonator designs, each 
characterized by a distinct set of structural parameters (metal 
ratio, pitch, aperture, and IDT number). Their predicted 
admittance spectra align closely with the measured curves 
from fabricated devices, indicating physical realizability and 
effective suppression of spurious responses. Crucially, these 
designs are generated rather than retrieved: they do not 
correspond to any existing entry in the PDK and thus expand 
the library with validated, spurious-free solutions tailored to 

the requested targets. 

IV. CONCLUSION 
This work presents an AI-driven design–test framework for 

MEMS acoustic resonators that systematically reduces 
reliance on multiphysics simulations and extensive wafer-level 
measurements. By incorporating regression-based parameter 
prediction, full-spectrum reconstruction, spurious mode 
quantification, and sparse recovery via CNNs, the framework 
achieves high predictive accuracy while substantially lowering 
computational and measurement costs. Experimental 
validation on a dataset of 14,883 industry-verified devices, 
10,000 simulated structures, and 283 fabricated samples 
demonstrates that resonance and anti-resonance frequencies 
can be predicted with 𝑅𝑅2 = 1.000, electromechanical coupling 
(𝑘𝑘𝑡𝑡2 ) and quality factors (𝑄𝑄𝑠𝑠,𝑄𝑄𝑝𝑝 ) with 𝑅𝑅2 > 0.99 , and full 
admittance spectra with mean squared error on the order of 
10−3. The sparse spectrum recovery further reconstructs the 
complete admittance curve from as few as 16 frequency 
samples, corresponding to a 98% reduction in measurement 
density, while preserving 𝑅𝑅2 > 0.98 . A simulation-to-real 
transfer mechanism ensures robustness when limited 
experimental data are available, and all outputs are 
consolidated into an AI-assisted PDK that supports both 
forward prediction and reverse design: it can auto-generate 
previously unseen, spurious-free resonators that meet user-
specified targets and match fabricated measurements, thereby 
converting the library from a passive repository into an active 
synthesis engine. These advances bridge simulation and 
fabrication, offering a scalable and validated solution for the 
intelligent design and testing of MEMS acoustic resonators. 
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Fig.  17. Impact of training set size on MSE and R² score between a small 
amount of test data only (dotted line) and Sim-to-Real PDK (solid line). 

 
Fig.  18. Pseudocode workflow for AI-Assisted generation and validation 
results of new spurious-free resonators. 
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